Diff for /wikisrc/users/rkujawa/g-rex.mdwn between versions 1.1 and 1.10

version 1.1, 2012/07/04 18:22:09 version 1.10, 2012/07/12 17:01:53
Line 1 Line 1
 [[!meta title="G-REX"]]  [[!meta title="G-REX"]]
   
 Programming the G-REX PCI bridge  Programming the G-REX PCI bridge
 version 0 - THIS IS A WORK IN PROGRESS!  
   
 # 0. Introduction  document version 0.3 - THIS IS A WORK IN PROGRESS!
   
 This document describes software/hardware interface of the G-REX PCI bridge for Amiga computers. What you're  # 0. Introduction
 reading is a result of reverse engineering, which was long and difficult process.   
   
 Next time when you're going to buy a hardware product for your Amiga, don't forget to ask the vendor to make the  This document describes software/hardware interface of the G-REX PCI bridge 
 programming documentation publicly available! Remeber that hardware without software is just a piece of junk...  for Amiga computers. What you're reading is a result of reverse engineering, 
   which was long and difficult process. 
   
   Next time when you're going to buy a hardware product for your Amiga, don't 
   forget to ask the vendor to make the programming documentation publicly 
   available! Remeber that hardware without software is just a piece of junk...
 and you can't write software without hardware documentation.  and you can't write software without hardware documentation.
   
 In case you've noticed an error in this document please let me know.   In case you've noticed an error in this document please let me know. 
   
 # 1. Theory of operation  # 1. Theory of operation
   
 G-REX is an evolution of PCI bridge used previously on CyberVisionPPC and BlizzardVisionPPC cards. These  # 1a. Hardware 
 products share a lot of similiarities.  
   Three versions of G-REX exist:
   
   * G-REX 1200 (for Amiga 1200 equipped with BlizzardPPC)
   * G-REX 4000D (for Amiga 4000 equipped with CyberStormPPC)
   * G-REX 4000T (for Amiga 4000T equipped with CyberStormPPC)
   
   There were at least two different revisions of G-REX 1200. Later revision 
   (marked "Neue Version") probably does support DMA in first two slots. I'm not 
   sure if it is possible to detect revision of the G-REX in software.
   
   Blizzard PPC hardware revision 0 is not compatible with G-REX
   (revision 2 is certainly compatible, not sure about revision 1). 
   
   There's a rumor that most G-REX 4000T were recalled due to hardware problem.
   
   G-REX is connected to local expansion slot present on CyberStorm PPC and 
   Blizzard PPC. These slots have different physical connectors but signals seem 
   to be mostly the same.
   
   The bridge itself is an evolution of PCI bridge used previously on 
   CyberVisionPPC and BlizzardVisionPPC cards. These products share a lot of 
   similiarities (at least when it comes to PCI interface). In fact CVPPC/BVPPC 
   can be treated as a special one-slot version of G-REX. Maybe actually it's the 
   other way around ;-). 
   
 Firmware does the dirty job of assigning PCI resources (BARs, interrupt lines, etc.) before the OS is running.   All memory spaces of G-REX are directly visible and addressable in Amiga memory
 Therefore G-REX does not need any special initialization.  space, unlike in Mediator. Firmware allocates memory space as needed, depending
   on what cards are installed.
   
   # 1b. Firmware
   
   G-REX firmware is a part of Flash ROM present on Blizzard PPC and CyberStorm
   PPC boards. Known CSPPC firmware revisions supporting G-REX include 44.69 and 
   44.71.
   
   It does the dirty job of assigning PCI resources (BARs, interrupt lines, 
   etc.) before the OS is running. Therefore G-REX does not need any special 
   initialization.
   
 # 2. Memory map  # 2. Memory map
   
 G-REX is configured as multipie AutoConf boards. Confusingly, they all have the same vendor and product ID.  G-REX is configured as multipie AutoConf boards. Confusingly, they all have the 
   same vendor (8512) and product (101).
   
 0xFFFA0000 - PCI I/O register space, 64KB.  0xFFFA0000 - PCI I/O register space, 64KB.
   
 0xFFFC0000 - PCI configuration space, 128KB.  0xFFFC0000 - PCI configuration space, 128KB.
   
 0xFFFE0000 - Bridge configuration registers, 4kB.  0xFFFE0000 - Bridge configuration registers, 4kB.
   
 0x80000000 - PCI memory space, variable size and number of boards, depending on cards installed.   0x80000000 - PCI memory space, variable size and number of boards, depending on cards installed. 
   
 # 2a. PCI configuration space  # 2a. PCI configuration space (0xFFFC0000)
   
 Access to configuration space is a bit tricky. Be warned that access to addresses not used by G-REX generates bus   Access to configuration space is a bit tricky. Be warned that access to 
 error (esp. to configuration locations which are unused because there is no card in the slot). Depending on how these  addresses not used by G-REX generates bus error (esp. to configuration 
 errors are supported in your OS, it may be important to trap them and handle correctly.   locations which are unused because there is no card in the slot). Depending on 
   how these errors are supported in your OS, it may be important to trap them and
   handle correctly. 
   
 Configuration data for first slot seems to be accessible at +0x1000.  Configuration data for first slot (device 0) is accessible at offset +0x1000, 
   location for the next slots can be obtained by shifting the bit:
   
 [TO BE COMPLETED]  Configuration space address + (offset << device number)
   
   For example to obtain configuration space for the second slot (device 1): 
   
   0xFFFC0000 + (0x1000 << 1) = 0xFFFC2000
   
 # 2b. PCI I/O registers space  For the third slot (device 2): 
   
   0xFFFC0000 + (0x1000 << 2) = 0xFFFC4000
   
   and so on.
   
   How to access device functions is not well analyzed, however funtion 0 is
   always available at address computed by the above equation. Function 1 is
   available at offset +0x100. One could assume that accessing the next
   device functions is possible by shifting the bit (as with device access),
   but that was not tested, becasue cards with more than two functions are not
   common. 
   
   On CVPPC/BVPPC configuration space is accessible at offset +0x0 (but there
   are also mirrors through whole configuration space).
   
   See [[p5pb_pci_conf_read()|http://nxr.netbsd.org/xref/src/sys/arch/amiga/pci/p5pb.c#p5pb_pci_conf_read]] and [[p5pb_pci_conf_write()|http://nxr.netbsd.org/xref/src/sys/arch/amiga/pci/p5pb.c#p5pb_pci_conf_read]] functions. 
   
   # 2b. PCI I/O registers space (0xFFFA0000)
   
 This space offers access to I/O registers of all PCI cards.  This space offers access to I/O registers of all PCI cards.
   
 BAR addresses in this space are treated as relative to 0xFFFA0000. Card with I/O BAR set to 0x100 will actually be   On G-REX BAR addresses in this space are treated as absolute.
 available at 0xFFFA0100.   
   On CVPPC/BVPPC BAR addresses in this space are treated as relative to 
   0xFFFA0000. Card with I/O BAR set to 0x100 will actually be available 
   at 0xFFFA0100. 
   
   # 2c. PCI memory space (0x80000000)
   
   This space offers access to memory (and memory-mapped registers) of PCI cards. 
   Each PCI memory BAR is assigned a separate AutoConf board during firmware 
   initialization.
   
 # 2c. PCI memory space   For example Voodoo 3, which has two 32MB memory BARs, will be visible as 
   two 8512/101 boards somewhere at 0x80000000 (or later).
   
 This space offers access to memory (and memory-mapped registers) of PCI cards. Each PCI memory BAR is assigned a   Addresses in this space are treated as absolute. Memory BAR register set to 
 separate AutoConf board during firmware initialization.   0x80000000 means it is configured at this address.
   
 Addresses in this space are treated as absolute. Memory BAR register set to 0x80000000 means it is configured at this  On CVPPC/BVPPC this space is present at different address - 0xE0000000.
 address.  
   
 # 2d. Bridge configuration registers  # 2d. Bridge configuration registers (0xFFFE0000)
   
 Offset - meaning  Offset - meaning
 0x0000 - Endianness swapper mode, write 0x02 to switch bridge into big endian mode  
   0x0000 - Endianness swapper mode, write 0x02 to switch bridge into 
   big endian mode
   
 0x0010 - Interrupt enable, write 0x01 to enable interrupts (INT2 on Amiga side)  0x0010 - Interrupt enable, write 0x01 to enable interrupts (INT2 on Amiga side)
   
 No need to fiddle with these registers, as they've been already configured properly by the firmware.  No need to fiddle with these registers, as they've been already configured 
   properly by the firmware.
   
 # 3. Reconfiguring the bus.  # 3. Detecting the G-REX
   
 If needed, it's possible to reconfigure bus just by writing new values into configuration space. Keep in mind that any  Since AutoConf entries are created by the firmware, it is not possible to
 previously initialized chips will need to be reset and initialized again (for example 3Dfx Voodoo 3, which is  detect G-REX easily if the correct firmware is not installed.
   
   Detecting the G-REX is done by looking for Phase5 vendor ID (8512) and product
   ID 101. Keep in mind that there will be more than one such board present, as
   expained above.
   
   It is possible to misdetect CVPPC/BVPPC as G-REX, since it uses the same vendor 
   and product ID if G-REX firmware is installed. With older firmware versions 
   these cards have no associated AutoConf entries.
   
   Differentiating between CVPPC/BVPPC and G-REX in this situation is possible
   by looking for Texas Instruments TVP4020 vendor and product ID at the beginning
   of PCI configuration space. Configuration data for Permedia 2 chip will be
   available at offset 0x0 on CVPPC/BVPPC, but on G-REX first slot is located
   at offset 0x1000. See [[p5pb_identify_bridge()|http://nxr.netbsd.org/xref/src/sys/arch/amiga/pci/p5pb.c#p5pb_identify_bridge]] 
   and [[p5pb_cvppc_probe()|http://nxr.netbsd.org/xref/src/sys/arch/amiga/pci/p5pb.c#p5pb_cvppc_probe]] functions
   in the NetBSD driver.
   
   # 4. Reconfiguring the bus
   
   If needed, it's possible to reconfigure bus just by writing new values into 
   configuration space. Keep in mind that any previously initialized chips will 
   need to be reset and initialized again (for example 3Dfx Voodoo 3, which is
 initialized by the firmware so it can display early startup menu).   initialized by the firmware so it can display early startup menu). 
   
 # 4. Interrupts  # 5. Interrupts
   
 All interrupts are converted into Amiga INT2 interrupt. There's no such thing as interrupt acknowledge register.  All interrupts are converted into Amiga INT2 interrupt. There's no such thing 
   as interrupt acknowledge register. However, there seems to be an interrupt 
   enable register (see "Bridge configuration registers" above).
   
 # 5. DMA  # 6. DMA
   
 The bridge is certainly capable of DMA, but it needs further reverse engineering.  The bridge is certainly capable of real busmaster DMA, but it needs further 
   reverse engineering.
   
 [TO BE COMPLETED]  [TO BE COMPLETED]
   
 There were at least two different revisions of G-REX 1200. Later revision probably does support DMA in all slots.  
   
 G-REX 4000D probably has busmaster DMA capability in all slots.  G-REX 4000D probably has busmaster DMA capability in all slots. G-REX 1200 has
   busmaster DMA in first or two first slots depending on hardware revision.
   
   # 7. Sample PCI bridge driver implementation
   
   The NetBSD [[p5pb|http://netbsd.gw.com/cgi-bin/man-cgi?p5pb+4.amiga+NetBSD-current]] 
   driver serves as an example driver implementation. It was written using the 
   same knowledge that went into this document.
   
   The driver consists of several files in [[src/sys/arch/amiga/pci|http://nxr.netbsd.org/xref/src/sys/arch/amiga/pci/]] directory.
   
   * p5membar.c - Dummy driver handling AutoConf resources.
   * p5membarvar.h - Structures used by the p5membar.
   * p5pb.c - Main driver code.
   * p5pbreg.h - Inlcude file containing register locations.
   * p5pbvar.h - Structures used by the p5pb.
   
   The p5pb does attach on top of p5bus, however p5membar drivers attach on top of zbus (since 8512/101 entries are seen as Zorro boards).
   
 # 6. Sample PCI bridge driver implementation  # 8. Thanks
   
 The NetBSD p5pb driver serves as example driver implementation. It was written using the same knowledge that went  [[AmiBay|http://www.amibay.com]] users d0pefish and ramborolf helped testing 
 into this document.  early versions of p5pb driver. Without their help this document would not 
   exist.
   

Removed from v.1.1  
changed lines
  Added in v.1.10


CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb