Diff for /wikisrc/security/cgdroot.mdwn between versions 1.15 and 1.19

version 1.15, 2018/01/14 04:12:25 version 1.19, 2019/03/24 20:00:04
Line 1 Line 1
 Root filesystem encryption  [[!meta title="Root Filesystem Encryption"]]
 ==========================  
   
 It is possible to run NetBSD with [complete root filesystem encryption][1], thanks to the `cgdroot.kmod` kernel module. It really is a memory disk (also knows as RAM disk) that is expected to be loaded in the kernel while booting. It is named after CGD, the "cryptographic device driver", which implements encryption for storage in the NetBSD kernel.  It is possible to run NetBSD with [complete root filesystem encryption][1], thanks to the `cgdroot.kmod` kernel module. It really is a memory disk (also knows as RAM disk) that is expected to be loaded in the kernel while booting. It is named after CGD, the "cryptographic device driver", which implements encryption for storage in the NetBSD kernel.
   
Line 29  really ran from a chroot in `/altroot`. Line 28  really ran from a chroot in `/altroot`.
 Obtaining the kernel module  Obtaining the kernel module
 ---------------------------  ---------------------------
   
 The `cgdroot.kmod` kernel module is part of the regular NetBSD releases since NetBSD 7.0. It can be found in the `<arch>/installation/miniroot` folder from the release. For instance, for the amd64 architecture on the German mirror for the 7.0.1 release, download it at [ftp.de.netbsd.org/pub/NetBSD/NetBSD-7.0.1/amd64/installation/miniroot/cgdroot.kmod](ftp://ftp.de.netbsd.org/pub/NetBSD/NetBSD-7.0.1/amd64/installation/miniroot/cgdroot.kmod).  The `cgdroot.kmod` kernel module is part of the regular NetBSD releases since NetBSD 7.0. It can be found in the `<arch>/installation/miniroot` folder from the release. For instance, for the amd64 architecture of the 7.0.1 release, download it at [cdn.netbsd.org/pub/NetBSD/NetBSD-7.0.1/amd64/installation/miniroot/cgdroot.kmod](http://cdn.netbsd.org/pub/NetBSD/NetBSD-7.0.1/amd64/installation/miniroot/cgdroot.kmod).
   
 Configuring the kernel module  Configuring the kernel module
 -----------------------------  -----------------------------
Line 72  Caveats Line 71  Caveats
   
 The biggest (known) issue with this setup occurs when firmware needs to be loaded early in the boot process (such as graphics drivers for the console). At the moment they need to be provided as part of the memory disk. Some network interfaces, of which some wireless devices in particular, also require loading firmware to work properly.  The biggest (known) issue with this setup occurs when firmware needs to be loaded early in the boot process (such as graphics drivers for the console). At the moment they need to be provided as part of the memory disk. Some network interfaces, of which some wireless devices in particular, also require loading firmware to work properly.
   
   Firmware that can be loaded later (e.g. microcode in `sysutils/intel-microcode-netbsd` package) can be found only if the corresponding paths in the `hw.firmware.path` sysctl variable are adjusted to start with `/altroot`. 
   
 This setup is not entirely safe against physical attacks. An attacker can modify the boot process to store the passphrase for later retrieval, or insert a backdoor while booting. To defend against such attacks, the bootloader, kernel and ramdisk all need to be signed and their integrity checked before booting (e.g. with [[!template id=man name="tpm" section="4"]]). Alternatively, it is possible to boot from a removable medium (e.g. USB stick), which can be protected against tampering attacks (e.g. secure storage, read-only volume...).  This setup is not entirely safe against physical attacks. An attacker can modify the boot process to store the passphrase for later retrieval, or insert a backdoor while booting. To defend against such attacks, the bootloader, kernel and ramdisk all need to be signed and their integrity checked before booting (e.g. with [[!template id=man name="tpm" section="4"]]). Alternatively, it is possible to boot from a removable medium (e.g. USB stick), which can be protected against tampering attacks (e.g. secure storage, read-only volume...).
   
 It is also possible to boot a Xen DOM0 system with root filesystem encryption. However, Xen-enabled NetBSD kernels currently do not support loading modules at boot-time. The memory disk has to be placed directly inside the kernel instead (with [[!template id=man name="mdconfig" section="8"]] or a new kernel configuration).  It is also possible to boot a Xen DOM0 system with root filesystem encryption. However, Xen-enabled NetBSD kernels currently do not support loading modules at boot-time. The memory disk has to be placed directly inside the kernel instead (with [[!template id=man name="mdconfig" section="8"]] or a new kernel configuration).

Removed from v.1.15  
changed lines
  Added in v.1.19


CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb