1: Introduction
2: ============
3:
4: [![[Xen
5: screenshot]](http://www.netbsd.org/gallery/in-Action/hubertf-xens.png)](http://www.netbsd.org/gallery/in-Action/hubertf-xen.png)
6:
7: Xen is a hypervisor (or virtual machine monitor) for x86 hardware
8: (i686-class or higher), which supports running multiple guest
9: operating systems on a single physical machine. Xen is a Type 1 or
10: bare-metal hypervisor; one uses the Xen kernel to control the CPU,
11: memory and console, a dom0 operating system which mediates access to
12: other hardware (e.g., disks, network, USB), and one or more domU
13: operating systems which operate in an unprivileged virtualized
14: environment. IO requests from the domU systems are forwarded by the
15: hypervisor (Xen) to the dom0 to be fulfilled.
16:
17: Xen supports two styles of guests. The original is Para-Virtualized
18: (PV) which means that the guest OS does not attempt to access hardware
19: directly, but instead makes hypercalls to the hypervisor. This is
20: analogous to a user-space program making system calls. (The dom0
21: operating system uses PV calls for some functions, such as updating
22: memory mapping page tables, but has direct hardware access for disk
23: and network.) PV guests must be specifically coded for Xen.
24:
25: The more recent style is HVM, which means that the guest does not have
26: code for Xen and need not be aware that it is running under Xen.
27: Attempts to access hardware registers are trapped and emulated. This
28: style is less efficient but can run unmodified guests.
29:
30: Generally any amd64 machine will work with Xen and PV guests. In
31: theory i386 computers without amd64 support can be used for Xen <=
32: 4.2, but we have no recent reports of this working (this is a hint).
33: For HVM guests, the VT or VMX cpu feature (Intel) or SVM/HVM/VT
34: (amd64) is needed; "cpuctl identify 0" will show this. TODO: Clean up
35: and check the above features.
36:
37: At boot, the dom0 kernel is loaded as a module with Xen as the kernel.
38: The dom0 can start one or more domUs. (Booting is explained in detail
39: in the dom0 section.)
40:
41: NetBSD supports Xen in that it can serve as dom0, be used as a domU,
42: and that Xen kernels and tools are available in pkgsrc. This HOWTO
43: attempts to address both the case of running a NetBSD dom0 on hardware
44: and running domUs under it (NetBSD and other), and also running NetBSD
45: as a domU in a VPS.
46:
47: Some versions of Xen support "PCI passthrough", which means that
48: specific PCI devices can be made available to a specific domU instead
49: of the dom0. This can be useful to let a domU run X11, or access some
50: network interface or other peripheral.
51:
52: NetBSD 6 and earlier supported Xen 2; support was removed fro NetBSD
53: 7. Xen 2 has been removed from pkgsrc.
54:
55: Prerequisites
56: -------------
57:
58: Installing NetBSD/Xen is not extremely difficult, but it is more
59: complex than a normal installation of NetBSD.
60: In general, this HOWTO is occasionally overly restrictive about how
61: things must be done, guiding the reader to stay on the established
62: path when there are no known good reasons to stray.
63:
64: This HOWTO presumes a basic familiarity with the Xen system
65: architecture. This HOWTO presumes familiarity with installing NetBSD
66: on i386/amd64 hardware and installing software from pkgsrc.
67: See also the [Xen website](http://www.xenproject.org/).
68:
69: Versions of Xen and NetBSD
70: ==========================
71:
72: Most of the installation concepts and instructions are independent
73: of Xen version and NetBSD version. This section gives advice on
74: which version to choose. Versions not in pkgsrc and older unsupported
75: versions of NetBSD are intentionally ignored.
76:
77: Xen
78: ---
79:
80: In NetBSD, xen is provided in pkgsrc, via matching pairs of packages
81: xenkernel and xentools. We will refer only to the kernel versions,
82: but note that both packages must be installed together and must have
83: matching versions.
84:
85: xenkernel3 provides Xen 3.1. It is no longer maintained by Xen, and the last applied security patch was in
86: 2011. Thus, it should not be used. It supports PCI passthrough,
87: which is why people use it anyway. Xen 3.1 supports i386, both PAE and
88: non-PAE.
89:
90: xenkernel33 provides Xen 3.3. It is no longer maintained by Xen, and
91: the last applied security patch was in 2012. Thus, it should not be
92: used. Xen 3.3 supports i386, but only in PAE mode. There are no good
93: reasons to run this version.
94:
95: xenkernel41 provides Xen 4.1. It is no longer maintained by Xen, but
96: as of 2016-11 received backported security patches. Xen 4.1 supports
97: i386, but only in PAE mode. There are no good reasons to run this
98: version.
99:
100: xenkernel42 provides Xen 4.2. It is no longer maintained by Xen, but
101: as of 2016-11 received backported security patches. Xen 4.2 supports
102: i386, but only in PAE mode. The only reason to run this is if you
103: need to use xm instead of xl, or if you need to run an i386 dom0
104: (because your hardware is i386 only).
105:
106: xenkernel45 provides Xen 4.5. It is no longer maintained by Xen, but
107: as of 2016-11 it received security patches. Xen 4.5 requires an amd64
108: dom0, but domUs can be amd64 or i386 PAE. TODO: It is either a
109: conservative choice or somewhat old.
110:
111: xenkernel45 provides Xen 4.6. It is new to pkgsrc in 2016-05. It is
112: no longer maintained by Xen, but as of 2016-11 it received security
113: patches. Xen 4.6 requires an amd64 dom0, but domUs can be amd64 or
114: i386 PAE. TODO: It is either a somewhat aggressive choice or the
115: standard choice
116:
117: See also the [Xen Security Advisory page](http://xenbits.xen.org/xsa/).
118:
119: Ideally newer versions of Xen will be added to pkgsrc.
120:
121: Note that NetBSD support is called XEN3. It works with Xen 3 and Xen
122: 4 because the hypercall interface has been stable.
123:
124: Xen command program
125: -------------------
126:
127: Early Xen used a program called xm to manipulate the system from the
128: dom0. Starting in 4.1, a replacement program with similar behavior
129: called xl is provided, but it does not work well in 4.1. In 4.2, both
130: xm and xl work fine. 4.4 is the last version that has xm. You must
131: choose one or the other, because it affects which daemons you run.
132: However, the rc.d scripts provided by xentools packages expect a
133: particular version, and you should use the version used by the
134: scripts.
135:
136: NetBSD
137: ------
138:
139: The netbsd-6, netbsd-7, and -current branches are all reasonable
140: choices, with more or less the same considerations for non-Xen use.
141: Therefore, netbsd-7 is recommended as the stable version of the most
142: recent release for production use. For those wanting to learn Xen or
143: without production stability concerns, netbsd-7 is still likely most
144: appropriate. Xen runs fine on netbsd-5, but the xentools packages are
145: likely difficult to build.
146:
147: As of NetBSD 6, a NetBSD domU will support multiple vcpus. There is
148: no SMP support for NetBSD as dom0. (The dom0 itself doesn't really
149: need SMP for dom0 functions; the lack of support is really a problem
150: when using a dom0 as a normal computer.)
151:
152: Architecture
153: ------------
154:
155: Xen itself can run on i386 (some versions) or amd64 machines (all
156: versions). (Practically, almost any computer where one would want to
157: run Xen today supports amd64.)
158:
159: Xen, the dom0 kernel, and each domU kernel can be either i386 or
160: amd64. When building a xenkernel package, one obtains i386 on an i386
161: host, and amd64 on an amd64 host. If the xen kernel is i386, then the
162: dom0 kernel and all domU kernels must be i386. With an amd64 xen
163: kernel, an amd64 dom0 kernel is known to work, and an i386PAE dom0
164: kernel should in theory work. An amd64 xen/dom0 is known to support
165: both i386PAE and amd64 domUs.
166:
167: i386 dom0 and domU kernels must be PAE (except for Xen 3.1); these are
168: built by default. (Note that emacs (at least) fails if run on i386
169: with PAE when built without, and vice versa, presumably due to bugs in
170: the undump code.)
171:
172: Because of the above, the standard approach is to use amd64 for the
173: dom0.
174:
175: Xen 4.2 is the last version to support i386 as a host. TODO: Clarify
176: if this is about the CPU, the xen kernel, or the dom0 kernel having to
177: be amd64.
178:
179:
180: Stability
181: ---------
182:
183: Mostly, NetBSD as a dom0 or domU is quite stable.
184: However, there are some open PRs indicating problems.
185:
186: - [PR 48125](http://gnats.netbsd.org/48125)
187: - [PR 47720](http://gnats.netbsd.org/47720)
188:
189: Note also that there are issues with sparse vnd(4) instances, but
190: these are not about Xen -- they just are noticed with sparse vnd(4)
191: instances in support of virtual disks in a dom0.
192:
193: Recommendation
194: --------------
195:
196: Therefore, this HOWTO recommends running xenkernel45 or xenkernel46,
197: xl, the NetBSD 7 stable branch, and to use an amd64 kernel as the
198: dom0. Either the i386PAE or amd64 version of NetBSD may be used as
199: domUs.
200:
201: Build problems
202: --------------
203:
204: Ideally, all versions of Xen in pkgsrc would build on all versions of
205: NetBSD on both i386 and amd64. However, that isn't the case. Besides
206: aging code and aging compilers, qemu (included in xentools for HVM
207: support) is difficult to build. The following are known to work or FAIL:
208:
209: xenkernel3 netbsd-5 amd64
210: xentools3 netbsd-5 amd64
211: xentools3=hvm netbsd-5 amd64 ????
212: xenkernel33 netbsd-5 amd64
213: xentools33 netbsd-5 amd64
214: xenkernel41 netbsd-5 amd64
215: xentools41 netbsd-5 amd64
216: xenkernel42 netbsd-5 amd64
217: xentools42 netbsd-5 amd64
218:
219: xenkernel3 netbsd-6 i386 FAIL
220: xentools3 netbsd-6 i386
221: xentools3-hvm netbsd-6 i386 FAIL (dependencies fail)
222: xenkernel33 netbsd-6 i386
223: xentools33 netbsd-6 i386
224: xenkernel41 netbsd-6 i386
225: xentools41 netbsd-6 i386
226: xenkernel42 netbsd-6 i386
227: xentools42 netbsd-6 i386 *MIXED
228:
229: (all 3 and 33 seem to FAIL)
230: xenkernel41 netbsd-7 i386
231: xentools41 netbsd-7 i386
232: xenkernel42 netbsd-7 i386
233: xentools42 netbsd-7 i386 ??FAIL
234:
235: (*On netbsd-6 i386, there is a xentools42 in the 2014Q3 official builds,
236: but it does not build for gdt.)
237:
238: NetBSD as a dom0
239: ================
240:
241: NetBSD can be used as a dom0 and works very well. The following
242: sections address installation, updating NetBSD, and updating Xen.
243: Note that it doesn't make sense to talk about installing a dom0 OS
244: without also installing Xen itself. We first address installing
245: NetBSD, which is not yet a dom0, and then adding Xen, pivoting the
246: NetBSD install to a dom0 install by just changing the kernel and boot
247: configuration.
248:
249: For experimenting with Xen, a machine with as little as 1G of RAM and
250: 100G of disk can work. For running many domUs in productions, far
251: more will be needed.
252:
253: Styles of dom0 operation
254: ------------------------
255:
256: There are two basic ways to use Xen. The traditional method is for
257: the dom0 to do absolutely nothing other than providing support to some
258: number of domUs. Such a system was probably installed for the sole
259: purpose of hosting domUs, and sits in a server room on a UPS.
260:
261: The other way is to put Xen under a normal-usage computer, so that the
262: dom0 is what the computer would have been without Xen, perhaps a
263: desktop or laptop. Then, one can run domUs at will. Purists will
264: deride this as less secure than the previous approach, and for a
265: computer whose purpose is to run domUs, they are right. But Xen and a
266: dom0 (without domUs) is not meaningfully less secure than the same
267: things running without Xen. One can boot Xen or boot regular NetBSD
268: alternately with little problems, simply refraining from starting the
269: Xen daemons when not running Xen.
270:
271: Note that NetBSD as dom0 does not support multiple CPUs. This will
272: limit the performance of the Xen/dom0 workstation approach. In theory
273: the only issue is that the "backend drivers" are not yet MPSAFE:
274: http://mail-index.netbsd.org/netbsd-users/2014/08/29/msg015195.html
275:
276: Installation of NetBSD
277: ----------------------
278:
279: First,
280: [install NetBSD/amd64](/guide/inst/)
281: just as you would if you were not using Xen.
282: However, the partitioning approach is very important.
283:
284: If you want to use RAIDframe for the dom0, there are no special issues
285: for Xen. Typically one provides RAID storage for the dom0, and the
286: domU systems are unaware of RAID. The 2nd-stage loader bootxx_* skips
287: over a RAID1 header to find /boot from a filesystem within a RAID
288: partition; this is no different when booting Xen.
289:
290: There are 4 styles of providing backing storage for the virtual disks
291: used by domUs: raw partitions, LVM, file-backed vnd(4), and SAN.
292:
293: With raw partitions, one has a disklabel (or gpt) partition sized for
294: each virtual disk to be used by the domU. (If you are able to predict
295: how domU usage will evolve, please add an explanation to the HOWTO.
296: Seriously, needs tend to change over time.)
297:
298: One can use [lvm(8)](/guide/lvm/) to create logical devices to use
299: for domU disks. This is almost as efficient as raw disk partitions
300: and more flexible. Hence raw disk partitions should typically not
301: be used.
302:
303: One can use files in the dom0 filesystem, typically created by dd'ing
304: /dev/zero to create a specific size. This is somewhat less efficient,
305: but very convenient, as one can cp the files for backup, or move them
306: between dom0 hosts.
307:
308: Finally, in theory one can place the files backing the domU disks in a
309: SAN. (This is an invitation for someone who has done this to add a
310: HOWTO page.)
311:
312: Installation of Xen
313: -------------------
314:
315: In the dom0, install sysutils/xenkernel42 and sysutils/xentools42 from
316: pkgsrc (or another matching pair).
317: See [the pkgsrc
318: documentation](http://www.NetBSD.org/docs/pkgsrc/) for help with pkgsrc.
319:
320: For Xen 3.1, support for HVM guests is in sysutils/xentool3-hvm. More
321: recent versions have HVM support integrated in the main xentools
322: package. It is entirely reasonable to run only PV guests.
323:
324: Next you need to install the selected Xen kernel itself, which is
325: installed by pkgsrc as "/usr/pkg/xen*-kernel/xen.gz". Copy it to /.
326: For debugging, one may copy xen-debug.gz; this is conceptually similar
327: to DIAGNOSTIC and DEBUG in NetBSD. xen-debug.gz is basically only
328: useful with a serial console. Then, place a NetBSD XEN3_DOM0 kernel
329: in /, copied from releasedir/amd64/binary/kernel/netbsd-XEN3_DOM0.gz
330: of a NetBSD build. If using i386, use
331: releasedir/i386/binary/kernel/netbsd-XEN3PAE_DOM0.gz. (If using Xen
332: 3.1 and i386, you may use XEN3_DOM0 with the non-PAE Xen. But you
333: should not use Xen 3.1.) Both xen and the NetBSD kernel may be (and
334: typically are) left compressed.
335:
336: In a dom0 kernel, kernfs is mandatory for xend to comunicate with the
337: kernel, so ensure that /kern is in fstab. TODO: Say this is default,
338: or file a PR and give a reference.
339:
340: Because you already installed NetBSD, you have a working boot setup
341: with an MBR bootblock, either bootxx_ffsv1 or bootxx_ffsv2 at the
342: beginning of your root filesystem, /boot present, and likely
343: /boot.cfg. (If not, fix before continuing!)
344:
345: Add a line to to /boot.cfg to boot Xen. See boot.cfg(5) for an
346: example. The basic line is
347:
348: menu=Xen:load /netbsd-XEN3_DOM0.gz console=pc;multiboot /xen.gz dom0_mem=256M
349:
350: which specifies that the dom0 should have 256M, leaving the rest to be
351: allocated for domUs. To use a serial console, use
352:
353: menu=Xen:load /netbsd-XEN3_DOM0.gz console=com0;multiboot /xen.gz dom0_mem=256M console=com1 com1=9600,8n1
354:
355: which will use the first serial port for Xen (which counts starting
356: from 1), forcing speed/parity, and also for NetBSD (which counts
357: starting at 0). In an attempt to add performance, one can also add
358:
359: dom0_max_vcpus=1 dom0_vcpus_pin
360:
361: to force only one vcpu to be provided (since NetBSD dom0 can't use
362: more) and to pin that vcpu to a physical cpu. TODO: benchmark this.
363:
364: Xen has [many boot
365: options](http://xenbits.xenproject.org/docs/4.5-testing/misc/xen-command-line.html),
366: and other tham dom0 memory and max_vcpus, they are generally not
367: necessary.
368:
369: As with non-Xen systems, you should have a line to boot /netbsd (a
370: kernel that works without Xen) and fallback versions of the non-Xen
371: kernel, Xen, and the dom0 kernel.
372:
373: Now, reboot so that you are running a DOM0 kernel under Xen, rather
374: than GENERIC without Xen.
375:
376: Using grub (historic)
377: ---------------------
378:
379: Before NetBSD's native bootloader could support Xen, the use of
380: grub was recommended. If necessary, see the
381: [old grub information](/ports/xen/howto-grub/).
382:
383: The [HowTo on Installing into
384: RAID-1](http://mail-index.NetBSD.org/port-xen/2006/03/01/0010.html)
385: explains how to set up booting a dom0 with Xen using grub with
386: NetBSD's RAIDframe. (This is obsolete with the use of NetBSD's native
387: boot.)
388:
389: Configuring Xen
390: ---------------
391:
392: Xen logs will be in /var/log/xen.
393:
394: Now, you have a system that will boot Xen and the dom0 kernel, but not
395: do anything else special. Make sure that you have rebooted into Xen.
396: There will be no domUs, and none can be started because you still have
397: to configure the dom0 daemons.
398:
399: The daemons which should be run vary with Xen version and with whether
400: one is using xm or xl. The Xen 3.1 and 3.3 packages use xm. Xen 4.1
401: and higher packages use xl. While is is possible to use xm with some
402: 4.x versions (TODO: 4.1 and 4.2?), the pkgsrc-provided rc.d scripts do
403: not support this as of 2014-12-26, and thus the HOWTO does not support
404: it either. (Make sure your packages are reasonably recent.)
405:
406: For "xm" (3.1 and 3.3), you should enable xend and xenbackendd (but
407: note that you should be using 4.x):
408:
409: xend=YES
410: xenbackendd=YES
411:
412: For "xl" (4.x), you should enabled xend and xencommons (xenstored).
413: Trying to boot 4.x without xencommons=YES will result in a hang; it is
414: necessary to hig ^C on the console to let the machine finish booting.
415: TODO: explain why xend is installed by the package.
416:
417: xencommons=YES
418:
419: The installation of NetBSD should already have created devices for xen
420: (xencons, xenevt), but if they are not present, create them:
421:
422: cd /dev && sh MAKEDEV xen
423:
424: TODO: Recommend for/against xen-watchdog.
425:
426: After you have configured the daemons and either started them (in the
427: order given) or rebooted, use xm or xl to inspect Xen's boot messages,
428: available resources, and running domains. An example with xl follows:
429:
430: # xl dmesg
431: [xen's boot info]
432: # xl info
433: [available memory, etc.]
434: # xl list
435: Name Id Mem(MB) CPU State Time(s) Console
436: Domain-0 0 64 0 r---- 58.1
437:
438: ### Issues with xencommons
439:
440: xencommons starts xenstored, which stores data on behalf of dom0 and
441: domUs. It does not currently work to stop and start xenstored.
442: Certainly all domUs should be shutdown first, following the sort order
443: of the rc.d scripts. However, the dom0 sets up state with xenstored,
444: and is not notified when xenstored exits, leading to not recreating
445: the state when the new xenstored starts. Until there's a mechanism to
446: make this work, one should not expect to be able to restart xenstored
447: (and thus xencommons). There is currently no reason to expect that
448: this will get fixed any time soon.
449:
450: anita (for testing NetBSD)
451: --------------------------
452:
453: With the setup so far (assuming 4.2/xl), one should be able to run
454: anita (see pkgsrc/misc/py-anita) to test NetBSD releases, by doing (as
455: root, because anita must create a domU):
456:
457: anita --vmm=xl test file:///usr/obj/i386/
458:
459: Alternatively, one can use --vmm=xm to use xm-based domU creation
460: instead (and must, on Xen <= 4.1). TODO: confirm that anita xl really works.
461:
462: Xen-specific NetBSD issues
463: --------------------------
464:
465: There are (at least) two additional things different about NetBSD as a
466: dom0 kernel compared to hardware.
467:
468: One is that modules are not usable in DOM0 kernels, so one must
469: compile in what's needed. It's not really that modules cannot work,
470: but that modules must be built for XEN3_DOM0 because some of the
471: defines change and the normal module builds don't do this. Basically,
472: enabling Xen changes the kernel ABI, and the module build system
473: doesn't cope with this.
474:
475: The other difference is that XEN3_DOM0 does not have exactly the same
476: options as GENERIC. While it is debatable whether or not this is a
477: bug, users should be aware of this and can simply add missing config
478: items if desired.
479:
480: Updating NetBSD in a dom0
481: -------------------------
482:
483: This is just like updating NetBSD on bare hardware, assuming the new
484: version supports the version of Xen you are running. Generally, one
485: replaces the kernel and reboots, and then overlays userland binaries
486: and adjusts /etc.
487:
488: Note that one must update both the non-Xen kernel typically used for
489: rescue purposes and the DOM0 kernel used with Xen.
490:
491: Converting from grub to /boot
492: -----------------------------
493:
494: These instructions were [TODO: will be] used to convert a system from
495: grub to /boot. The system was originally installed in February of
496: 2006 with a RAID1 setup and grub to boot Xen 2, and has been updated
497: over time. Before these commands, it was running NetBSD 6 i386, Xen
498: 4.1 and grub, much like the message linked earlier in the grub
499: section.
500:
501: # Install mbr bootblocks on both disks.
502: fdisk -i /dev/rwd0d
503: fdisk -i /dev/rwd1d
504: # Install NetBSD primary boot loader (/ is FFSv1) into RAID1 components.
505: installboot -v /dev/rwd0d /usr/mdec/bootxx_ffsv1
506: installboot -v /dev/rwd1d /usr/mdec/bootxx_ffsv1
507: # Install secondary boot loader
508: cp -p /usr/mdec/boot /
509: # Create boog.cfg following earlier guidance:
510: menu=Xen:load /netbsd-XEN3PAE_DOM0.gz console=pc;multiboot /xen.gz dom0_mem=256M
511: menu=Xen.ok:load /netbsd-XEN3PAE_DOM0.ok.gz console=pc;multiboot /xen.ok.gz dom0_mem=256M
512: menu=GENERIC:boot
513: menu=GENERIC single-user:boot -s
514: menu=GENERIC.ok:boot netbsd.ok
515: menu=GENERIC.ok single-user:boot netbsd.ok -s
516: menu=Drop to boot prompt:prompt
517: default=1
518: timeout=30
519:
520: TODO: actually do this and fix it if necessary.
521:
522: Upgrading Xen versions
523: ---------------------
524:
525: Updating Xen is conceptually not difficult, but can run into all the
526: issues found when installing Xen. Assuming migration from 4.1 to 4.2,
527: remove the xenkernel41 and xentools41 packages and install the
528: xenkernel42 and xentools42 packages. Copy the 4.2 xen.gz to /.
529:
530: Ensure that the contents of /etc/rc.d/xen* are correct. Specifically,
531: they must match the package you just installed and not be left over
532: from some previous installation.
533:
534: Enable the correct set of daemons; see the configuring section above.
535: (Upgrading from 3.x to 4.x without doing this will result in a hang.)
536:
537: Ensure that the domU config files are valid for the new version.
538: Specifically: remove autorestart=True, and ensure that disks are
539: specified with numbers as the second argument, as the examples above
540: show, and not NetBSD device names.
541:
542: Hardware known to work
543: ----------------------
544:
545: Arguably, this section is misplaced, and there should be a page of
546: hardware that runs NetBSD/amd64 well, with the mostly-well-founded
547: assumption that NetBSD/xen runs fine on any modern hardware that
548: NetBSD/amd64 runs well on. Until then, we give motherboard/CPU/RAM
549: triples to aid those choosing a motherboard. Note that Xen systems
550: usually do not run X, so a listing here does not imply that X works at
551: all.
552:
553: Supermicro X9SRL-F, Xeon E5-1650 v2, 96 GiB ECC
554: Supermicro ??, Atom C2758 (8 core), 32 GiB ECC
555: ASUS M5A78L-M/USB3 AM3+ microATX, AMD Piledriver X8 4000MHz, 16 GiB ECC
556:
557: Older hardware:
558:
559: Intel D915GEV, Pentium4 CPU 3.40GHz, 4GB 533MHz Synchronous DDR2
560:
561: Running Xen under qemu
562: ----------------------
563:
564: The astute reader will note that this section is somewhat twisted.
565: However, it can be useful to run Xen under qemu either because the
566: version of NetBSD as a dom0 does not run on the hardware in use, or to
567: generate automated test cases involving Xen.
568:
569: In 2015-01, the following combination was reported to mostly work:
570:
571: host OS: NetBSD/amd64 6.1.4
572: qemu: 2.2.0 from pkgsrc
573: Xen kernel: xenkernel42-4.2.5nb1 from pkgsrc
574: dom0 kernel: NetBSD/amd64 6.1.5
575: Xen tools: xentools42-4.2.5 from pkgsrc
576:
577: See [PR 47720](http://gnats.netbsd.org/47720) for a problem with dom0
578: shutdown.
579:
580: Unprivileged domains (domU)
581: ===========================
582:
583: This section describes general concepts about domUs. It does not
584: address specific domU operating systems or how to install them. The
585: config files for domUs are typically in /usr/pkg/etc/xen, and are
586: typically named so that the file name, domU name and the domU's host
587: name match.
588:
589: The domU is provided with cpu and memory by Xen, configured by the
590: dom0. The domU is provided with disk and network by the dom0,
591: mediated by Xen, and configured in the dom0.
592:
593: Entropy in domUs can be an issue; physical disks and network are on
594: the dom0. NetBSD's /dev/random system works, but is often challenged.
595:
596: Config files
597: ------------
598:
599: There is no good order to present config files and the concepts
600: surrounding what is being configured. We first show an example config
601: file, and then in the various sections give details.
602:
603: See (at least in xentools41) /usr/pkg/share/examples/xen/xmexample*,
604: for a large number of well-commented examples, mostly for running
605: GNU/Linux.
606:
607: The following is an example minimal domain configuration file
608: "/usr/pkg/etc/xen/foo". It is (with only a name change) an actual
609: known working config file on Xen 4.1 (NetBSD 5 amd64 dom0 and NetBSD 5
610: i386 domU). The domU serves as a network file server.
611:
612: # -*- mode: python; -*-
613:
614: kernel = "/netbsd-XEN3PAE_DOMU-i386-foo.gz"
615: memory = 1024
616: vif = [ 'mac=aa:00:00:d1:00:09,bridge=bridge0' ]
617: disk = [ 'file:/n0/xen/foo-wd0,0x0,w',
618: 'file:/n0/xen/foo-wd1,0x1,w' ]
619:
620: The domain will have the same name as the file. The kernel has the
621: host/domU name in it, so that on the dom0 one can update the various
622: domUs independently. The vif line causes an interface to be provided,
623: with a specific mac address (do not reuse MAC addresses!), in bridge
624: mode. Two disks are provided, and they are both writable; the bits
625: are stored in files and Xen attaches them to a vnd(4) device in the
626: dom0 on domain creation. The system treates xbd0 as the boot device
627: without needing explicit configuration.
628:
629: By default xm looks for domain config files in /usr/pkg/etc/xen. Note
630: that "xm create" takes the name of a config file, while other commands
631: take the name of a domain. To create the domain, connect to the
632: console, create the domain while attaching the console, shutdown the
633: domain, and see if it has finished stopping, do (or xl with Xen >=
634: 4.2):
635:
636: xm create foo
637: xm console foo
638: xm create -c foo
639: xm shutdown foo
640: xm list
641:
642: Typing ^] will exit the console session. Shutting down a domain is
643: equivalent to pushing the power button; a NetBSD domU will receive a
644: power-press event and do a clean shutdown. Shutting down the dom0
645: will trigger controlled shutdowns of all configured domUs.
646:
647: domU kernels
648: ------------
649:
650: On a physical computer, the BIOS reads sector 0, and a chain of boot
651: loaders finds and loads a kernel. Normally this comes from the root
652: filesystem. With Xen domUs, the process is totally different. The
653: normal path is for the domU kernel to be a file in the dom0's
654: filesystem. At the request of the dom0, Xen loads that kernel into a
655: new domU instance and starts execution. While domU kernels can be
656: anyplace, reasonable places to store domU kernels on the dom0 are in /
657: (so they are near the dom0 kernel), in /usr/pkg/etc/xen (near the
658: config files), or in /u0/xen (where the vdisks are).
659:
660: Note that loading the domU kernel from the dom0 implies that boot
661: blocks, /boot, /boot.cfg, and so on are all ignored in the domU.
662: See the VPS section near the end for discussion of alternate ways to
663: obtain domU kernels.
664:
665: CPU and memory
666: --------------
667:
668: A domain is provided with some number of vcpus, less than the number
669: of cpus seen by the hypervisor. (For a dom0, this is controlled by
670: the boot argument "dom0_max_vcpus=1".) For a domU, it is controlled
671: from the config file by the "vcpus = N" directive.
672:
673: A domain is provided with memory; this is controlled in the config
674: file by "memory = N" (in megabytes). In the straightforward case, the
675: sum of the the memory allocated to the dom0 and all domUs must be less
676: than the available memory.
677:
678: Xen also provides a "balloon" driver, which can be used to let domains
679: use more memory temporarily. TODO: Explain better, and explain how
680: well it works with NetBSD.
681:
682: Virtual disks
683: -------------
684:
685: With the file/vnd style, typically one creates a directory,
686: e.g. /u0/xen, on a disk large enough to hold virtual disks for all
687: domUs. Then, for each domU disk, one writes zeros to a file that then
688: serves to hold the virtual disk's bits; a suggested name is foo-xbd0
689: for the first virtual disk for the domU called foo. Writing zeros to
690: the file serves two purposes. One is that preallocating the contents
691: improves performance. The other is that vnd on sparse files has
692: failed to work. TODO: give working/notworking NetBSD versions for
693: sparse vnd. Note that the use of file/vnd for Xen is not really
694: different than creating a file-backed virtual disk for some other
695: purpose, except that xentools handles the vnconfig commands. To
696: create an empty 4G virtual disk, simply do
697:
698: dd if=/dev/zero of=foo-xbd0 bs=1m count=4096
699:
700: Do not use qemu-img-xen, because this will create sparse file. There
701: have been recent (2015) reports of sparse vnd(4) devices causing
702: lockups, but there is apparently no PR.
703:
704: With the lvm style, one creates logical devices. They are then used
705: similarly to vnds. TODO: Add an example with lvm.
706:
707: In domU config files, the disks are defined as a sequence of 3-tuples.
708: The first element is "method:/path/to/disk". Common methods are
709: "file:" for file-backed vnd. and "phy:" for something that is already
710: a (TODO: character or block) device.
711:
712: The second element is an artifact of how virtual disks are passed to
713: Linux, and a source of confusion with NetBSD Xen usage. Linux domUs
714: are given a device name to associate with the disk, and values like
715: "hda1" or "sda1" are common. In a NetBSD domU, the first disk appears
716: as xbd0, the second as xbd1, and so on. However, xm/xl demand a
717: second argument. The name given is converted to a major/minor by
718: calling stat(2) on the name in /dev and this is passed to the domU.
719: In the general case, the dom0 and domU can be different operating
720: systems, and it is an unwarranted assumption that they have consistent
721: numbering in /dev, or even that the dom0 OS has a /dev. With NetBSD
722: as both dom0 and domU, using values of 0x0 for the first disk and 0x1
723: for the second works fine and avoids this issue. For a GNU/Linux
724: guest, one can create /dev/hda1 in /dev, or to pass 0x301 for
725: /dev/hda1.
726:
727: The third element is "w" for writable disks, and "r" for read-only
728: disks.
729:
730: Virtual Networking
731: ------------------
732:
733: Xen provides virtual ethernets, each of which connects the dom0 and a
734: domU. For each virtual network, there is an interface "xvifN.M" in
735: the dom0, and in domU index N, a matching interface xennetM (NetBSD
736: name). The interfaces behave as if there is an Ethernet with two
737: adaptors connected. From this primitive, one can construct various
738: configurations. We focus on two common and useful cases for which
739: there are existing scripts: bridging and NAT.
740:
741: With bridging (in the example above), the domU perceives itself to be
742: on the same network as the dom0. For server virtualization, this is
743: usually best. Bridging is accomplished by creating a bridge(4) device
744: and adding the dom0's physical interface and the various xvifN.0
745: interfaces to the bridge. One specifies "bridge=bridge0" in the domU
746: config file. The bridge must be set up already in the dom0; an
747: example /etc/ifconfig.bridge0 is:
748:
749: create
750: up
751: !brconfig bridge0 add wm0
752:
753: With NAT, the domU perceives itself to be behind a NAT running on the
754: dom0. This is often appropriate when running Xen on a workstation.
755: TODO: NAT appears to be configured by "vif = [ '' ]".
756:
757: The MAC address specified is the one used for the interface in the new
758: domain. The interface in dom0 will use this address XOR'd with
759: 00:00:00:01:00:00. Random MAC addresses are assigned if not given.
760:
761: Sizing domains
762: --------------
763:
764: Modern x86 hardware has vast amounts of resources. However, many
765: virtual servers can function just fine on far less. A system with
766: 256M of RAM and a 4G disk can be a reasonable choice. Note that it is
767: far easier to adjust virtual resources than physical ones. For
768: memory, it's just a config file edit and a reboot. For disk, one can
769: create a new file and vnconfig it (or lvm), and then dump/restore,
770: just like updating physical disks, but without having to be there and
771: without those pesky connectors.
772:
773: Starting domains automatically
774: ------------------------------
775:
776: To start domains foo at bar at boot and shut them down cleanly on dom0
777: shutdown, in rc.conf add:
778:
779: xendomains="foo bar"
780:
781: Note that earlier versions of the xentools41 xendomains rc.d scripth
782: usd xl, when one should use xm with 4.1.
783:
784: Creating specific unprivileged domains (domU)
785: =============================================
786:
787: Creating domUs is almost entirely independent of operating system. We
788: have already presented the basics of config files. Note that you must
789: have already completed the dom0 setup so that "xl list" (or "xm list")
790: works.
791:
792: Creating an unprivileged NetBSD domain (domU)
793: ---------------------------------------------
794:
795: See the earlier config file, and adjust memory. Decide on how much
796: storage you will provide, and prepare it (file or lvm).
797:
798: While the kernel will be obtained from the dom0 filesystem, the same
799: file should be present in the domU as /netbsd so that tools like
800: savecore(8) can work. (This is helpful but not necessary.)
801:
802: The kernel must be specifically for Xen and for use as a domU. The
803: i386 and amd64 provide the following kernels:
804:
805: i386 XEN3_DOMU
806: i386 XEN3PAE_DOMU
807: amd64 XEN3_DOMU
808:
809: Unless using Xen 3.1 (and you shouldn't) with i386-mode Xen, you must
810: use the PAE version of the i386 kernel.
811:
812: This will boot NetBSD, but this is not that useful if the disk is
813: empty. One approach is to unpack sets onto the disk outside of xen
814: (by mounting it, just as you would prepare a physical disk for a
815: system you can't run the installer on).
816:
817: A second approach is to run an INSTALL kernel, which has a miniroot
818: and can load sets from the network. To do this, copy the INSTALL
819: kernel to / and change the kernel line in the config file to:
820:
821: kernel = "/home/bouyer/netbsd-INSTALL_XEN3_DOMU"
822:
823: Then, start the domain as "xl create -c configname".
824:
825: Alternatively, if you want to install NetBSD/Xen with a CDROM image, the following
826: line should be used in the config file.
827:
828: disk = [ 'phy:/dev/wd0e,0x1,w', 'phy:/dev/cd0a,0x2,r' ]
829:
830: After booting the domain, the option to install via CDROM may be
831: selected. The CDROM device should be changed to `xbd1d`.
832:
833: Once done installing, "halt -p" the new domain (don't reboot or halt,
834: it would reload the INSTALL_XEN3_DOMU kernel even if you changed the
835: config file), switch the config file back to the XEN3_DOMU kernel,
836: and start the new domain again. Now it should be able to use "root on
837: xbd0a" and you should have a, functional NetBSD domU.
838:
839: TODO: check if this is still accurate.
840: When the new domain is booting you'll see some warnings about *wscons*
841: and the pseudo-terminals. These can be fixed by editing the files
842: `/etc/ttys` and `/etc/wscons.conf`. You must disable all terminals in
843: `/etc/ttys`, except *console*, like this:
844:
845: console "/usr/libexec/getty Pc" vt100 on secure
846: ttyE0 "/usr/libexec/getty Pc" vt220 off secure
847: ttyE1 "/usr/libexec/getty Pc" vt220 off secure
848: ttyE2 "/usr/libexec/getty Pc" vt220 off secure
849: ttyE3 "/usr/libexec/getty Pc" vt220 off secure
850:
851: Finally, all screens must be commented out from `/etc/wscons.conf`.
852:
853: It is also desirable to add
854:
855: powerd=YES
856:
857: in rc.conf. This way, the domain will be properly shut down if
858: `xm shutdown -R` or `xm shutdown -H` is used on the dom0.
859:
860: It is not strictly necessary to have a kernel (as /netbsd) in the domU
861: filesystem. However, various programs (e.g. netstat) will use that
862: kernel to look up symbols to read from kernel virtual memory. If
863: /netbsd is not the running kernel, those lookups will fail. (This is
864: not really a Xen-specific issue, but because the domU kernel is
865: obtained from the dom0, it is far more likely to be out of sync or
866: missing with Xen.)
867:
868: Creating an unprivileged Linux domain (domU)
869: --------------------------------------------
870:
871: Creating unprivileged Linux domains isn't much different from
872: unprivileged NetBSD domains, but there are some details to know.
873:
874: First, the second parameter passed to the disk declaration (the '0x1' in
875: the example below)
876:
877: disk = [ 'phy:/dev/wd0e,0x1,w' ]
878:
879: does matter to Linux. It wants a Linux device number here (e.g. 0x300
880: for hda). Linux builds device numbers as: (major \<\< 8 + minor).
881: So, hda1 which has major 3 and minor 1 on a Linux system will have
882: device number 0x301. Alternatively, devices names can be used (hda,
883: hdb, ...) as xentools has a table to map these names to devices
884: numbers. To export a partition to a Linux guest we can use:
885:
886: disk = [ 'phy:/dev/wd0e,0x300,w' ]
887: root = "/dev/hda1 ro"
888:
889: and it will appear as /dev/hda on the Linux system, and be used as root
890: partition.
891:
892: To install the Linux system on the partition to be exported to the
893: guest domain, the following method can be used: install
894: sysutils/e2fsprogs from pkgsrc. Use mke2fs to format the partition
895: that will be the root partition of your Linux domain, and mount it.
896: Then copy the files from a working Linux system, make adjustments in
897: `/etc` (fstab, network config). It should also be possible to extract
898: binary packages such as .rpm or .deb directly to the mounted partition
899: using the appropriate tool, possibly running under NetBSD's Linux
900: emulation. Once the filesystem has been populated, umount it. If
901: desirable, the filesystem can be converted to ext3 using tune2fs -j.
902: It should now be possible to boot the Linux guest domain, using one of
903: the vmlinuz-\*-xenU kernels available in the Xen binary distribution.
904:
905: To get the linux console right, you need to add:
906:
907: extra = "xencons=tty1"
908:
909: to your configuration since not all linux distributions auto-attach a
910: tty to the xen console.
911:
912: Creating an unprivileged Solaris domain (domU)
913: ----------------------------------------------
914:
915: See possibly outdated
916: [Solaris domU instructions](/ports/xen/howto-solaris/).
917:
918:
919: PCI passthrough: Using PCI devices in guest domains
920: ---------------------------------------------------
921:
922: The dom0 can give other domains access to selected PCI
923: devices. This can allow, for example, a non-privileged domain to have
924: access to a physical network interface or disk controller. However,
925: keep in mind that giving a domain access to a PCI device most likely
926: will give the domain read/write access to the whole physical memory,
927: as PCs don't have an IOMMU to restrict memory access to DMA-capable
928: device. Also, it's not possible to export ISA devices to non-dom0
929: domains, which means that the primary VGA adapter can't be exported.
930: A guest domain trying to access the VGA registers will panic.
931:
932: If the dom0 is NetBSD, it has to be running Xen 3.1, as support has
933: not been ported to later versions at this time.
934:
935: For a PCI device to be exported to a domU, is has to be attached to
936: the "pciback" driver in dom0. Devices passed to the dom0 via the
937: pciback.hide boot parameter will attach to "pciback" instead of the
938: usual driver. The list of devices is specified as "(bus:dev.func)",
939: where bus and dev are 2-digit hexadecimal numbers, and func a
940: single-digit number:
941:
942: pciback.hide=(00:0a.0)(00:06.0)
943:
944: pciback devices should show up in the dom0's boot messages, and the
945: devices should be listed in the `/kern/xen/pci` directory.
946:
947: PCI devices to be exported to a domU are listed in the "pci" array of
948: the domU's config file, with the format "0000:bus:dev.func".
949:
950: pci = [ '0000:00:06.0', '0000:00:0a.0' ]
951:
952: In the domU an "xpci" device will show up, to which one or more pci
953: busses will attach. Then the PCI drivers will attach to PCI busses as
954: usual. Note that the default NetBSD DOMU kernels do not have "xpci"
955: or any PCI drivers built in by default; you have to build your own
956: kernel to use PCI devices in a domU. Here's a kernel config example;
957: note that only the "xpci" lines are unusual.
958:
959: include "arch/i386/conf/XEN3_DOMU"
960:
961: # Add support for PCI busses to the XEN3_DOMU kernel
962: xpci* at xenbus ?
963: pci* at xpci ?
964:
965: # PCI USB controllers
966: uhci* at pci? dev ? function ? # Universal Host Controller (Intel)
967:
968: # USB bus support
969: usb* at uhci?
970:
971: # USB Hubs
972: uhub* at usb?
973: uhub* at uhub? port ? configuration ? interface ?
974:
975: # USB Mass Storage
976: umass* at uhub? port ? configuration ? interface ?
977: wd* at umass?
978: # SCSI controllers
979: ahc* at pci? dev ? function ? # Adaptec [23]94x, aic78x0 SCSI
980:
981: # SCSI bus support (for both ahc and umass)
982: scsibus* at scsi?
983:
984: # SCSI devices
985: sd* at scsibus? target ? lun ? # SCSI disk drives
986: cd* at scsibus? target ? lun ? # SCSI CD-ROM drives
987:
988:
989: NetBSD as a domU in a VPS
990: =========================
991:
992: The bulk of the HOWTO is about using NetBSD as a dom0 on your own
993: hardware. This section explains how to deal with Xen in a domU as a
994: virtual private server where you do not control or have access to the
995: dom0. This is not intended to be an exhaustive list of VPS providers;
996: only a few are mentioned that specifically support NetBSD.
997:
998: VPS operators provide varying degrees of access and mechanisms for
999: configuration. The big issue is usually how one controls which kernel
1000: is booted, because the kernel is nominally in the dom0 filesystem (to
1001: which VPS users do not normally have acesss). A second issue is how
1002: to install NetBSD.
1003: A VPS user may want to compile a kernel for security updates, to run
1004: npf, run IPsec, or any other reason why someone would want to change
1005: their kernel.
1006:
1007: One approach is to have an adminstrative interface to upload a kernel,
1008: or to select from a prepopulated list. Other approaches are pygrub
1009: (deprecated) and pvgrub, which are ways to have a bootloader obtain a
1010: kernel from the domU filesystem. This is closer to a regular physical
1011: computer, where someone who controls a machine can replace the kernel.
1012:
1013: A second issue is multiple CPUs. With NetBSD 6, domUs support
1014: multiple vcpus, and it is typical for VPS providers to enable multiple
1015: CPUs for NetBSD domUs.
1016:
1017: pygrub
1018: -------
1019:
1020: pygrub runs in the dom0 and looks into the domU filesystem. This
1021: implies that the domU must have a kernel in a filesystem in a format
1022: known to pygrub. As of 2014, pygrub seems to be of mostly historical
1023: interest.
1024:
1025: pvgrub
1026: ------
1027:
1028: pvgrub is a version of grub that uses PV operations instead of BIOS
1029: calls. It is booted from the dom0 as the domU kernel, and then reads
1030: /grub/menu.lst and loads a kernel from the domU filesystem.
1031:
1032: [Panix](http://www.panix.com/) lets users use pvgrub. Panix reports
1033: that pvgrub works with FFsv2 with 16K/2K and 32K/4K block/frag sizes
1034: (and hence with defaults from "newfs -O 2"). See [Panix's pvgrub
1035: page](http://www.panix.com/v-colo/grub.html), which describes only
1036: Linux but should be updated to cover NetBSD :-).
1037:
1038: [prgmr.com](http://prgmr.com/) also lets users with pvgrub to boot
1039: their own kernel. See then [prgmr.com NetBSD
1040: HOWTO](http://wiki.prgmr.com/mediawiki/index.php/NetBSD_as_a_DomU)
1041: (which is in need of updating).
1042:
1043: It appears that [grub's FFS
1044: code](http://xenbits.xensource.com/hg/xen-unstable.hg/file/bca284f67702/tools/libfsimage/ufs/fsys_ufs.c)
1045: does not support all aspects of modern FFS, but there are also reports
1046: that FFSv2 works fine. At prgmr, typically one has an ext2 or FAT
1047: partition for the kernel with the intent that grub can understand it,
1048: which leads to /netbsd not being the actual kernel. One must remember
1049: to update the special boot partiion.
1050:
1051: Amazon
1052: ------
1053:
1054: See the [Amazon EC2 page](../amazon_ec2/).
1055:
1056: Using npf
1057: ---------
1058:
1059: In standard kernels, npf is a module, and thus cannot be loaded in a
1060: DOMU kernel.
1061:
1062: TODO: Explain how to compile npf into a custom kernel, answering (but
1063: note that the problem was caused by not booting the right kernel)
1064: [this email to
1065: netbsd-users](http://mail-index.netbsd.org/netbsd-users/2014/12/26/msg015576.html).
1066:
1067: TODO items for improving NetBSD/xen
1068: ===================================
1069:
1070: * Make the NetBSD dom0 kernel work with SMP.
1071: * Test the Xen 4.5 packages adequately to be able to recommend them as
1072: the standard approach.
1073: * Get PCI passthrough working on Xen 4.5
1074: * Get pvgrub into pkgsrc, either via xentools or separately.
1075: * grub
1076: * Check/add support to pkgsrc grub2 for UFS2 and arbitrary
1077: fragsize/blocksize (UFS2 support may be present; the point is to
1078: make it so that with any UFS1/UFS2 filesystem setup that works
1079: with NetBSD grub will also work).
1080: See [pkg/40258](http://gnats.netbsd.org/40258).
1081: * Push patches upstream.
1082: * Get UFS2 patches into pvgrub.
1083: * Add support for PV ops to a version of /boot, and make it usable as
1084: a kernel in Xen, similar to pvgrub.
1085: * Solve somehow the issue with modules for GENERIC not being loadable
1086: in a Xen dom0 or domU kernel.
1087:
1088: Random pointers
1089: ===============
1090:
1091: TODO: This section contains links from elsewhere not yet integrated
1092: into the HOWTO.
1093:
1094: * http://www.lumbercartel.ca/library/xen/
1095: * http://pbraun.nethence.com/doc/sysutils/xen_netbsd_dom0.html
CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb