1: Introduction
2: ============
3:
4: [![[Xen
5: screenshot]](http://www.netbsd.org/gallery/in-Action/hubertf-xens.png)](http://www.netbsd.org/gallery/in-Action/hubertf-xen.png)
6:
7: Xen is a hypervisor (or virtual machine monitor) for x86 hardware
8: (i686-class or higher), which supports running multiple guest
9: operating systems on a single physical machine. Xen is a Type 1 or
10: bare-metal hypervisor; one uses the Xen kernel to control the CPU,
11: memory and console, a dom0 operating system which mediates access to
12: other hardware (e.g., disks, network, USB), and one or more domU
13: operating systems which operate in an unprivileged virtualized
14: environment. IO requests from the domU systems are forwarded by the
15: hypervisor (Xen) to the dom0 to be fulfilled.
16:
17: Xen supports two styles of guests. The original is Para-Virtualized
18: (PV) which means that the guest OS does not attempt to access hardware
19: directly, but instead makes hypercalls to the hypervisor. This is
20: analogous to a user-space program making system calls. (The dom0
21: operating system uses PV calls for some functions, such as updating
22: memory mapping page tables, but has direct hardware access for disk
23: and network.) PV guests must be specifically coded for Xen.
24:
25: The more recent style is HVM, which means that the guest does not have
26: code for Xen and need not be aware that it is running under Xen.
27: Attempts to access hardware registers are trapped and emulated. This
28: style is less efficient but can run unmodified guests.
29:
30: Generally any machine that runs NetBSD/amd64 will work with Xen and PV
31: guests. In theory i386 computers (without x86_64/amd64 support) can
32: be used for Xen <= 4.2, but we have no recent reports of this working
33: (this is a hint). For HVM guests, hardware support is needed, but it
34: is common on recent machines. For Intel CPUs, one needs the VT-x
35: extension, shown in "cpuctl identify 0" as VMX. For AMD CPUs, one
36: needs the AMD-V extensions, shown in "cpuctl identify 0" as SVM.
37: There are further features for IOMMU virtualization, Intel's VT-d and
38: AMD's AMD-Vi. TODO: Explain whether Xen on NetBSD makes use of these
39: features. TODO: Review by someone who really understands this.
40:
41: Note that a FreeBSD dom0 requires VT-x and VT-d (or equivalent); this
42: is because the FreeBSD dom0 does not run in PV mode.
43:
44: At boot, the dom0 kernel is loaded as a module with Xen as the kernel.
45: The dom0 can start one or more domUs. (Booting is explained in detail
46: in the dom0 section.)
47:
48: NetBSD supports Xen in that it can serve as dom0, be used as a domU,
49: and that Xen kernels and tools are available in pkgsrc. This HOWTO
50: attempts to address both the case of running a NetBSD dom0 on hardware
51: and running domUs under it (NetBSD and other), and also running NetBSD
52: as a domU in a VPS.
53:
54: Xen 3.1 in pkgsrc supports "PCI passthrough", which means that
55: specific PCI devices can be made available to a specific domU instead
56: of the dom0. This can be useful to let a domU run X11, or access some
57: network interface or other peripheral.
58:
59: NetBSD 6 and earlier supported Xen 2; support was removed from NetBSD
60: 7. Xen 2 has been removed from pkgsrc.
61:
62: Prerequisites
63: -------------
64:
65: Installing NetBSD/Xen is not extremely difficult, but it is more
66: complex than a normal installation of NetBSD.
67: In general, this HOWTO is occasionally overly restrictive about how
68: things must be done, guiding the reader to stay on the established
69: path when there are no known good reasons to stray.
70:
71: This HOWTO presumes a basic familiarity with the Xen system
72: architecture, with installing NetBSD on i386/amd64 hardware, and with
73: installing software from pkgsrc. See also the [Xen
74: website](http://www.xenproject.org/).
75:
76: Versions of Xen and NetBSD
77: ==========================
78:
79: Most of the installation concepts and instructions are independent
80: of Xen version and NetBSD version. This section gives advice on
81: which version to choose. Versions not in pkgsrc and older unsupported
82: versions of NetBSD are intentionally ignored.
83:
84: The term "amd64" is used to refer to both the NetBSD port and to the
85: hardware architecture on which it runs. (Such hardware is made by
86: both Intel and AMD, and in 2016 a normal PC has this CPU
87: architecture.)
88:
89: Xen
90: ---
91:
92: In NetBSD, Xen is provided in pkgsrc, via matching pairs of packages
93: xenkernel and xentools. We will refer only to the kernel versions,
94: but note that both packages must be installed together and must have
95: matching versions.
96:
97: xenkernel3 provides Xen 3.1. It is no longer maintained by Xen, and
98: the last applied security patch was in 2011. Thus, it should not be
99: used. It supports PCI passthrough, which is why people use it anyway.
100: Xen 3.1 runs on i386 (both non-PAE and PAE) and amd64 hardware.
101:
102: xenkernel33 provides Xen 3.3. It is no longer maintained by Xen, and
103: the last applied security patch was in 2012. Thus, it should not be
104: used. Xen 3.3 runs on i386 PAE and amd64 hardware. There are no good
105: reasons to run this version.
106:
107: xenkernel41 provides Xen 4.1. It is no longer maintained by Xen, but
108: as of 2016-12 received backported security patches. Xen 4.1 runs on
109: i386 PAE and amd64 hardware. There are no good reasons to run this
110: version.
111:
112: xenkernel42 provides Xen 4.2. It is no longer maintained by Xen, but
113: as of 2016-12 received backported security patches. Xen 4.2 runs on
114: i386 PAE and amd64 hardware. The only reason to run this is if you
115: need to use xm instead of xl, or if you need to run on hardware that
116: supports i386 but not amd64. (This might also be useful if you need
117: an i386 dom0, if it turns out that an amd64 Xen kernel and an i386
118: dom0 is problematic.)
119:
120: xenkernel45 provides Xen 4.5. As of 2016-12, security patches were
121: released by Xen and applied to pkgsrc. Xen 4.5 runs on amd64 hardware
122: only. While slightly old, 4.5 has been tested and run by others, so
123: it is the conservative choice.
124:
125: xenkernel46 provides Xen 4.6. It is new to pkgsrc as of 2016-05. As
126: of 2016-12, security patches were released by Xen and applied to
127: pkgsrc. Xen 4.6 runs on amd64 hardware only For new installations,
128: 4.6 is probably the appropriate choice and it will likely soon be the
129: standard approach.
130:
131: Xen 4.7 (released 2016-06) and 4.8 (released 2016-12) are not yet in
132: pkgsrc.
133:
134: See also the [Xen Security Advisory page](http://xenbits.xen.org/xsa/).
135:
136: Note that NetBSD support is called XEN3. It works with Xen 3 and Xen
137: 4 because the hypercall interface has been stable.
138:
139: Xen command program
140: -------------------
141:
142: Early Xen used a program called xm to manipulate the system from the
143: dom0. Starting in 4.1, a replacement program with similar behavior
144: called xl is provided, but it does not work well in 4.1. In 4.2, both
145: xm and xl work fine. 4.4 is the last version that has xm.
146:
147: You must make a global choice to use xm or xl, because it affects not
148: only which command you use, but the command used by rc.d scripts
149: (specifically xendomains) and which daemons should be run. The
150: xentools packages provide xm for 3.1, 3.3 and 4.1 and xl for 4.2 and up.
151:
152: In 4.2, you can choose to use xm by simply changing the ctl_command
153: variable and setting xend=YES in rc.conf.
154:
155: With xl, virtual devices are configured in parallel, which can cause
156: problems if they are written assuming serial operation (e.g., updating
157: firewall rules without explicit locking). There is now locking for
158: the provided scripts, which works for normal casses (e.g, file-backed
159: xbd, where a vnd must be allocated). But, as of 201612, it has not
160: been adequately tested for a complex custom setup with a large number
161: of interfaces.
162:
163: NetBSD
164: ------
165:
166: The netbsd-6, netbsd-7, and -current branches are all reasonable
167: choices, with more or less the same considerations for non-Xen use.
168: Therefore, netbsd-7 is recommended as the stable version of the most
169: recent release for production use. In addition, netbsd-7 and -current
170: have a important scheduler fix (in November of 2015) affecting
171: contention between dom0 and domUs; see
172: https://releng.netbsd.org/cgi-bin/req-7.cgi?show=1040 for a
173: description. For those wanting to learn Xen or without production
174: stability concerns, netbsd-7 is still likely most appropriate, but
175: -current is also a reasonable choice. (Xen runs ok on netbsd-5, but
176: the xentools packages are likely difficult to build, and netbsd-5 is
177: not supported.)
178:
179: As of NetBSD 6, a NetBSD domU will support multiple vcpus. There is
180: no SMP support for NetBSD as dom0. (The dom0 itself doesn't really
181: need SMP for dom0 functions; the lack of support is really a problem
182: when using a dom0 as a normal computer.)
183:
184: Architecture
185: ------------
186:
187: Xen itself can run on i386 (Xen < 4.2) or amd64 hardware (all Xen
188: versions). (Practically, almost any computer where one would want to
189: run Xen today supports amd64.)
190:
191: Xen, the dom0 system, and each domU system can be either i386 or
192: amd64. When building a xenkernel package, one obtains an i386 Xen
193: kernel on an i386 host, and an amd64 Xen kernel on an amd64 host. If
194: the Xen kernel is i386, then the dom0 kernel and all domU kernels must
195: be i386. With an amd64 Xen kernel, an amd64 dom0 kernel is known to
196: work, and an i386 dom0 kernel should in theory work. An amd64
197: Xen/dom0 is known to support both i386 and amd64 domUs.
198:
199: i386 dom0 and domU kernels must be PAE (except for an i386 Xen 3.1
200: kernel, where one can use non-PAE for dom0 and all domUs); PAE kernels
201: are included in the NetBSD default build. (Note that emacs (at least)
202: fails if run on i386 with PAE when built without, and vice versa,
203: presumably due to bugs in the undump code.)
204:
205: Because of the above, the standard approach is to use an amd64 Xen
206: kernel and NetBSD/amd64 for the dom0. For domUs, NetBSD/i386 (with
207: the PAE kernel) and NetBSD/amd64 are in widespread use, and there is
208: little to no Xen-specific reason to prefer one over the other.
209:
210: Note that to use an i386 dom0 with Xen 4.5 or higher, one must build
211: (or obtain from pre-built packages) an amd64 Xen kernel and install
212: that on the system. (One must also use a PAE i386 kernel, but this is
213: also required with an i386 Xen kernel.). Almost no one in the
214: NetBSD/Xen community does this, and the standard, well-tested,
215: approach is to use an amd64 dom0.
216:
217: A [posting on
218: xen-devel](https://lists.xen.org/archives/html/xen-devel/2012-07/msg00085.html)
219: explained that PV system call overhead was higher on amd64, and thus
220: there is some notion that i386 guests are faster. It goes on to
221: caution that the total situation is complex and not entirely
222: understood. On top of that caution, the post is about Linux, not
223: NetBSD. TODO: Include link to benchmarks, if someone posts them.
224:
225: Stability
226: ---------
227:
228: Mostly, NetBSD as a dom0 or domU is quite stable.
229: However, there are some open PRs indicating problems.
230:
231: - [PR 48125](http://gnats.netbsd.org/48125)
232: - [PR 47720](http://gnats.netbsd.org/47720)
233:
234: Note also that there are issues with sparse vnd(4) instances, but
235: these are not about Xen -- they just are noticed with sparse vnd(4)
236: instances in support of virtual disks in a dom0.
237:
238: Recommendation
239: --------------
240:
241: Therefore, this HOWTO recommends running xenkernel45 or xenkernel46,
242: xl, the NetBSD 7 stable branch, and to use an amd64 kernel as the
243: dom0. Either the i386PAE or amd64 version of NetBSD may be used as
244: domUs.
245:
246: Status
247: ------
248:
249: Ideally, all versions of Xen in pkgsrc would build on all supported
250: versions of NetBSD/amd64, to the point where this section would be
251: silly. However, that has not always been the case. Besides aging
252: code and aging compilers, qemu (included in xentools for HVM support)
253: is difficult to build. Note that there is intentionally no data for
254: 4.5+ up for i386, and often omits xentools info if the corresponding
255: kernel fails.
256:
257: The following table gives status, with the date last checked
258: (generally on the most recent quarterly branch). The first code is
259: "builds" if it builds ok, and "FAIL" for a failure to build. The
260: second code/date only appears for xenkernel* and is "works" if it runs
261: ok as a dom0 and can support a domU, and "FAIL" if it won't boot or
262: run a domU.
263:
264: xenkernel3 netbsd-6 i386 FAIL 201612
265: xenkernel33 netbsd-6 i386 FAIL 201612
266: xenkernel41 netbsd-6 i386 builds 201612
267: xenkernel42 netbsd-6 i386 builds 201612
268: xentools3 netbsd-6 i386 FAIL 201612
269: xentools33 netbsd-6 i386 FAIL 201612
270: xentools41 netbsd-6 i386 builds 201612
271: xentools42 netbsd-6 i386 FAIL 201612
272:
273: xenkernel3 netbsd-7 i386 FAIL 201412
274: xenkernel33 netbsd-7 i386 FAIL 201412
275: xenkernel41 netbsd-7 i386 builds 201412
276: xenkernel42 netbsd-7 i386 builds 201412
277: xentools41 netbsd-7 i386 builds 201412
278: xentools42 netbsd-7 i386 ??FAIL 201412
279:
280: xenkernel3 netbsd-6 amd64 FAIL 201612
281: xenkernel33 netbsd-6 amd64 FAIL 201612
282: xenkernel41 netbsd-6 amd64 builds 201612 works 201612
283: xenkernel42 netbsd-6 amd64 builds 201612 works 201612
284: xenkernel45 netbsd-6 amd64 builds 201612
285: xenkernel46 netbsd-6 amd64 builds 201612
286: xentools41 netbsd-6 amd64 builds 201612
287: xentools42 netbsd-6 amd64 builds 201612
288: xentools45 netbsd-6 amd64 builds 201612
289: xentools46 netbsd-6 amd64 FAIL 201612
290:
291: xenkernel3 netbsd-7 amd64 builds 201612
292: xenkernel33 netbsd-7 amd64 builds 201612
293: xenkernel41 netbsd-7 amd64 builds 201612
294: xenkernel42 netbsd-7 amd64 builds 201612
295: xenkernel45 netbsd-7 amd64 builds 201612
296: xenkernel46 netbsd-7 amd64 builds 201612
297: xentools3 netbsd-7 amd64 builds 201612
298: xentools3-hvm netbsd-7 amd64 builds 201612
299: xentools33 netbsd-7 amd64 FAIL 201612
300: xentools41 netbsd-7 amd64 builds 201612
301: xentools42 netbsd-7 amd64 builds 201612
302: xentools45 netbsd-7 amd64 builds 201612
303: xentools46 netbsd-7 amd64 builds 201612
304:
305: NetBSD as a dom0
306: ================
307:
308: NetBSD can be used as a dom0 and works very well. The following
309: sections address installation, updating NetBSD, and updating Xen.
310: Note that it doesn't make sense to talk about installing a dom0 OS
311: without also installing Xen itself. We first address installing
312: NetBSD, which is not yet a dom0, and then adding Xen, pivoting the
313: NetBSD install to a dom0 install by just changing the kernel and boot
314: configuration.
315:
316: For experimenting with Xen, a machine with as little as 1G of RAM and
317: 100G of disk can work. For running many domUs in productions, far
318: more will be needed; e.g. 4-8G and 1T of disk is reasonable for a
319: half-dozen domUs of 512M and 32G each. Basically, the RAM and disk
320: have to be bigger than the sum of the RAM/disk needs of the dom0 and
321: all the domUs.
322:
323: Styles of dom0 operation
324: ------------------------
325:
326: There are two basic ways to use Xen. The traditional method is for
327: the dom0 to do absolutely nothing other than providing support to some
328: number of domUs. Such a system was probably installed for the sole
329: purpose of hosting domUs, and sits in a server room on a UPS.
330:
331: The other way is to put Xen under a normal-usage computer, so that the
332: dom0 is what the computer would have been without Xen, perhaps a
333: desktop or laptop. Then, one can run domUs at will. Purists will
334: deride this as less secure than the previous approach, and for a
335: computer whose purpose is to run domUs, they are right. But Xen and a
336: dom0 (without domUs) is not meaningfully less secure than the same
337: things running without Xen. One can boot Xen or boot regular NetBSD
338: alternately with little problems, simply refraining from starting the
339: Xen daemons when not running Xen.
340:
341: Note that NetBSD as dom0 does not support multiple CPUs. This will
342: limit the performance of the Xen/dom0 workstation approach. In theory
343: the only issue is that the "backend drivers" are not yet MPSAFE:
344: http://mail-index.netbsd.org/netbsd-users/2014/08/29/msg015195.html
345:
346: Installation of NetBSD
347: ----------------------
348:
349: First,
350: [install NetBSD/amd64](/guide/inst/)
351: just as you would if you were not using Xen.
352: However, the partitioning approach is very important.
353:
354: If you want to use RAIDframe for the dom0, there are no special issues
355: for Xen. Typically one provides RAID storage for the dom0, and the
356: domU systems are unaware of RAID. The 2nd-stage loader bootxx_* skips
357: over a RAID1 header to find /boot from a file system within a RAID
358: partition; this is no different when booting Xen.
359:
360: There are 4 styles of providing backing storage for the virtual disks
361: used by domUs: raw partitions, LVM, file-backed vnd(4), and SAN.
362:
363: With raw partitions, one has a disklabel (or gpt) partition sized for
364: each virtual disk to be used by the domU. (If you are able to predict
365: how domU usage will evolve, please add an explanation to the HOWTO.
366: Seriously, needs tend to change over time.)
367:
368: One can use [lvm(8)](/guide/lvm/) to create logical devices to use
369: for domU disks. This is almost as efficient as raw disk partitions
370: and more flexible. Hence raw disk partitions should typically not
371: be used.
372:
373: One can use files in the dom0 file system, typically created by dd'ing
374: /dev/zero to create a specific size. This is somewhat less efficient,
375: but very convenient, as one can cp the files for backup, or move them
376: between dom0 hosts.
377:
378: Finally, in theory one can place the files backing the domU disks in a
379: SAN. (This is an invitation for someone who has done this to add a
380: HOWTO page.)
381:
382: Installation of Xen
383: -------------------
384:
385: In the dom0, install sysutils/xenkernel42 and sysutils/xentools42 from
386: pkgsrc (or another matching pair). See [the pkgsrc
387: documentation](http://www.NetBSD.org/docs/pkgsrc/) for help with
388: pkgsrc. Ensure that your packages are recent; the HOWTO does not
389: contemplate old builds.
390:
391:
392: For Xen 3.1, support for HVM guests is in sysutils/xentool3-hvm. More
393: recent versions have HVM support integrated in the main xentools
394: package. It is entirely reasonable to run only PV guests.
395:
396: Next you need to install the selected Xen kernel itself, which is
397: installed by pkgsrc as "/usr/pkg/xen*-kernel/xen.gz". Copy it to /.
398: For debugging, one may copy xen-debug.gz; this is conceptually similar
399: to DIAGNOSTIC and DEBUG in NetBSD. xen-debug.gz is basically only
400: useful with a serial console. Then, place a NetBSD XEN3_DOM0 kernel
401: in /, copied from releasedir/amd64/binary/kernel/netbsd-XEN3_DOM0.gz
402: of a NetBSD build. If using i386, use
403: releasedir/i386/binary/kernel/netbsd-XEN3PAE_DOM0.gz. (If using Xen
404: 3.1 and i386, you may use XEN3_DOM0 with the non-PAE Xen. But you
405: should not use Xen 3.1.) Both xen and the NetBSD kernel may be (and
406: typically are) left compressed.
407:
408: In a dom0, kernfs is mandatory for xend to communicate with the
409: kernel, so ensure that /kern is in fstab. (A standard NetBSD install
410: should already mount /kern.)
411:
412: Because you already installed NetBSD, you have a working boot setup
413: with an MBR bootblock, either bootxx_ffsv1 or bootxx_ffsv2 at the
414: beginning of your root file system, have /boot, and likely also
415: /boot.cfg. (If not, fix before continuing!)
416:
417: Add a line to to /boot.cfg to boot Xen. See boot.cfg(5) for an
418: example. The basic line is
419:
420: menu=Xen:load /netbsd-XEN3_DOM0.gz console=pc;multiboot /xen.gz dom0_mem=256M
421:
422: which specifies that the dom0 should have 256M, leaving the rest to be
423: allocated for domUs. To use a serial console, use
424:
425: menu=Xen:load /netbsd-XEN3_DOM0.gz console=com0;multiboot /xen.gz dom0_mem=256M console=com1 com1=9600,8n1
426:
427: which will use the first serial port for Xen (which counts starting
428: from 1), forcing speed/parity, and also for NetBSD (which counts
429: starting at 0). In an attempt to add performance, one can also add
430:
431: dom0_max_vcpus=1 dom0_vcpus_pin
432:
433: to force only one vcpu to be provided (since NetBSD dom0 can't use
434: more) and to pin that vcpu to a physical CPU. TODO: benchmark this.
435:
436: Xen has [many boot
437: options](http://xenbits.xenproject.org/docs/4.5-testing/misc/xen-command-line.html),
438: and other than dom0 memory and max_vcpus, they are generally not
439: necessary.
440:
441: As with non-Xen systems, you should have a line to boot /netbsd (a
442: kernel that works without Xen). Consider a line to boot /netbsd.ok (a
443: fallback version of the non-Xen kernel, updated manually when you are
444: sure /netbsd is ok). Consider also a line to boot fallback versions
445: of Xen and the dom0 kernel, but note that non-Xen NetBSD can be used
446: to resolve Xen booting issues.
447:
448: Probably you want a default=N line to choose Xen in the absence of
449: intervention.
450:
451: Now, reboot so that you are running a DOM0 kernel under Xen, rather
452: than GENERIC without Xen.
453:
454: Using grub (historic)
455: ---------------------
456:
457: Before NetBSD's native bootloader could support Xen, the use of
458: grub was recommended. If necessary, see the
459: [old grub information](/ports/xen/howto-grub).
460:
461: The [HowTo on Installing into
462: RAID-1](http://mail-index.NetBSD.org/port-xen/2006/03/01/0010.html)
463: explains how to set up booting a dom0 with Xen using grub with
464: NetBSD's RAIDframe. (This is obsolete with the use of NetBSD's native
465: boot. Now, just create a system with RAID-1, and alter /boot.cfg as
466: described above.)
467:
468: Configuring Xen
469: ---------------
470:
471: Xen logs will be in /var/log/xen.
472:
473: Now, you have a system that will boot Xen and the dom0 kernel, but not
474: do anything else special. Make sure that you have rebooted into Xen.
475: There will be no domUs, and none can be started because you still have
476: to configure the dom0 daemons.
477:
478: The daemons which should be run vary with Xen version and with whether
479: one is using xm or xl. The Xen 3.1, 3.3 and 4.1 packages use xm. Xen
480: 4.2 and up packages use xl. To use xm with 4.2, edit xendomains to
481: use xm instead.
482:
483: For 3.1 and 3.3, you should enable xend and xenbackendd:
484:
485: xend=YES
486: xenbackendd=YES
487:
488: For 4.1 and up, you should enable xencommons. Not enabling xencommons
489: will result in a hang; it is necessary to hit ^C on the console to let
490: the machine finish booting. If you are using xm (default in 4.1, or
491: if you changed xendomains in 4.2), you should also enable xend:
492:
493: xend=YES # only if using xm, and only installed <= 4.2
494: xencommons=YES
495:
496: TODO: Recommend for/against xen-watchdog.
497:
498: After you have configured the daemons and either started them (in the
499: order given) or rebooted, use xm or xl to inspect Xen's boot messages,
500: available resources, and running domains. An example with xl follows:
501:
502: # xl dmesg
503: [xen's boot info]
504: # xl info
505: [available memory, etc.]
506: # xl list
507: Name Id Mem(MB) CPU State Time(s) Console
508: Domain-0 0 64 0 r---- 58.1
509:
510: ### Issues with xencommons
511:
512: xencommons starts xenstored, which stores data on behalf of dom0 and
513: domUs. It does not currently work to stop and start xenstored.
514: Certainly all domUs should be shutdown first, following the sort order
515: of the rc.d scripts. However, the dom0 sets up state with xenstored,
516: and is not notified when xenstored exits, leading to not recreating
517: the state when the new xenstored starts. Until there's a mechanism to
518: make this work, one should not expect to be able to restart xenstored
519: (and thus xencommons). There is currently no reason to expect that
520: this will get fixed any time soon.
521:
522: ### No-longer needed advice about devices
523:
524: The installation of NetBSD should already have created devices for xen
525: (xencons, xenevt, xsd_kva), but if they are not present, create them:
526:
527: cd /dev && sh MAKEDEV xen
528:
529: anita (for testing NetBSD)
530: --------------------------
531:
532: With the setup so far (assuming 4.2/xl), one should be able to run
533: anita (see pkgsrc/misc/py-anita) to test NetBSD releases, by doing (as
534: root, because anita must create a domU):
535:
536: anita --vmm=xl test file:///usr/obj/i386/
537:
538: Alternatively, one can use --vmm=xm to use xm-based domU creation
539: instead (and must, on Xen <= 4.1). TODO: confirm that anita xl really works.
540:
541: Xen-specific NetBSD issues
542: --------------------------
543:
544: There are (at least) two additional things different about NetBSD as a
545: dom0 kernel compared to hardware.
546:
547: One is that the module ABI is different because some of the #defines
548: change, so one must build modules for Xen. As of netbsd-7, the build
549: system does this automatically. TODO: check this. (Before building
550: Xen modules was added, it was awkward to use modules to the point
551: where it was considered that it did not work.)
552:
553: The other difference is that XEN3_DOM0 does not have exactly the same
554: options as GENERIC. While it is debatable whether or not this is a
555: bug, users should be aware of this and can simply add missing config
556: items if desired.
557:
558: Updating NetBSD in a dom0
559: -------------------------
560:
561: This is just like updating NetBSD on bare hardware, assuming the new
562: version supports the version of Xen you are running. Generally, one
563: replaces the kernel and reboots, and then overlays userland binaries
564: and adjusts /etc.
565:
566: Note that one must update both the non-Xen kernel typically used for
567: rescue purposes and the DOM0 kernel used with Xen.
568:
569: Converting from grub to /boot
570: -----------------------------
571:
572: These instructions were [TODO: will be] used to convert a system from
573: grub to /boot. The system was originally installed in February of
574: 2006 with a RAID1 setup and grub to boot Xen 2, and has been updated
575: over time. Before these commands, it was running NetBSD 6 i386, Xen
576: 4.1 and grub, much like the message linked earlier in the grub
577: section.
578:
579: # Install MBR bootblocks on both disks.
580: fdisk -i /dev/rwd0d
581: fdisk -i /dev/rwd1d
582: # Install NetBSD primary boot loader (/ is FFSv1) into RAID1 components.
583: installboot -v /dev/rwd0d /usr/mdec/bootxx_ffsv1
584: installboot -v /dev/rwd1d /usr/mdec/bootxx_ffsv1
585: # Install secondary boot loader
586: cp -p /usr/mdec/boot /
587: # Create boot.cfg following earlier guidance:
588: menu=Xen:load /netbsd-XEN3PAE_DOM0.gz console=pc;multiboot /xen.gz dom0_mem=256M
589: menu=Xen.ok:load /netbsd-XEN3PAE_DOM0.ok.gz console=pc;multiboot /xen.ok.gz dom0_mem=256M
590: menu=GENERIC:boot
591: menu=GENERIC single-user:boot -s
592: menu=GENERIC.ok:boot netbsd.ok
593: menu=GENERIC.ok single-user:boot netbsd.ok -s
594: menu=Drop to boot prompt:prompt
595: default=1
596: timeout=30
597:
598: TODO: actually do this and fix it if necessary.
599:
600: Upgrading Xen versions
601: ---------------------
602:
603: Minor version upgrades are trivial. Just rebuild/replace the
604: xenkernel version and copy the new xen.gz to / (where /boot.cfg
605: references it), and reboot.
606:
607: Major version upgrades are conceptually not difficult, but can run
608: into all the issues found when installing Xen. Assuming migration
609: from 4.1 to 4.2, remove the xenkernel41 and xentools41 packages and
610: install the xenkernel42 and xentools42 packages. Copy the 4.2 xen.gz
611: to /.
612:
613: Ensure that the contents of /etc/rc.d/xen* are correct. Specifically,
614: they must match the package you just installed and not be left over
615: from some previous installation.
616:
617: Enable the correct set of daemons; see the configuring section above.
618: (Upgrading from 3.x to 4.x without doing this will result in a hang.)
619:
620: Ensure that the domU config files are valid for the new version.
621: Specifically, for 4.x remove autorestart=True, and ensure that disks
622: are specified with numbers as the second argument, as the examples
623: above show, and not NetBSD device names.
624:
625: Hardware known to work
626: ----------------------
627:
628: Arguably, this section is misplaced, and there should be a page of
629: hardware that runs NetBSD/amd64 well, with the mostly-well-founded
630: assumption that NetBSD/xen runs fine on any modern hardware that
631: NetBSD/amd64 runs well on. Until then, we give motherboard/CPU (and
632: sometimes RAM) pairs/triples to aid those choosing a motherboard.
633: Note that Xen systems usually do not run X, so a listing here does not
634: imply that X works at all.
635:
636: Supermicro X9SRL-F, Xeon E5-1650 v2, 96 GiB ECC
637: Supermicro ??, Atom C2758 (8 core), 32 GiB ECC
638: ASUS M5A78L-M/USB3 AM3+ microATX, AMD Piledriver X8 4000MHz, 16 GiB ECC
639:
640: Older hardware:
641:
642: Intel D915GEV, Pentium4 CPU 3.40GHz, 4GB 533MHz Synchronous DDR2
643: INTEL DG33FB, "Intel(R) Core(TM)2 Duo CPU E6850 @ 3.00GHz"
644: INTEL DG33FB, "Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz"
645:
646: Running Xen under qemu
647: ----------------------
648:
649: The astute reader will note that this section is somewhat twisted.
650: However, it can be useful to run Xen under qemu either because the
651: version of NetBSD as a dom0 does not run on the hardware in use, or to
652: generate automated test cases involving Xen.
653:
654: In 2015-01, the following combination was reported to mostly work:
655:
656: host OS: NetBSD/amd64 6.1.4
657: qemu: 2.2.0 from pkgsrc
658: Xen kernel: xenkernel42-4.2.5nb1 from pkgsrc
659: dom0 kernel: NetBSD/amd64 6.1.5
660: Xen tools: xentools42-4.2.5 from pkgsrc
661:
662: See [PR 47720](http://gnats.netbsd.org/47720) for a problem with dom0
663: shutdown.
664:
665: Unprivileged domains (domU)
666: ===========================
667:
668: This section describes general concepts about domUs. It does not
669: address specific domU operating systems or how to install them. The
670: config files for domUs are typically in /usr/pkg/etc/xen, and are
671: typically named so that the file name, domU name and the domU's host
672: name match.
673:
674: The domU is provided with CPU and memory by Xen, configured by the
675: dom0. The domU is provided with disk and network by the dom0,
676: mediated by Xen, and configured in the dom0.
677:
678: Entropy in domUs can be an issue; physical disks and network are on
679: the dom0. NetBSD's /dev/random system works, but is often challenged.
680:
681: Config files
682: ------------
683:
684: There is no good order to present config files and the concepts
685: surrounding what is being configured. We first show an example config
686: file, and then in the various sections give details.
687:
688: See (at least in xentools41) /usr/pkg/share/examples/xen/xmexample*,
689: for a large number of well-commented examples, mostly for running
690: GNU/Linux.
691:
692: The following is an example minimal domain configuration file
693: "/usr/pkg/etc/xen/foo". It is (with only a name change) an actual
694: known working config file on Xen 4.1 (NetBSD 5 amd64 dom0 and NetBSD 5
695: i386 domU). The domU serves as a network file server.
696:
697: # -*- mode: python; -*-
698:
699: kernel = "/netbsd-XEN3PAE_DOMU-i386-foo.gz"
700: memory = 1024
701: vif = [ 'mac=aa:00:00:d1:00:09,bridge=bridge0' ]
702: disk = [ 'file:/n0/xen/foo-wd0,0x0,w',
703: 'file:/n0/xen/foo-wd1,0x1,w' ]
704:
705: The domain will have the same name as the file. The kernel has the
706: host/domU name in it, so that on the dom0 one can update the various
707: domUs independently. The vif line causes an interface to be provided,
708: with a specific mac address (do not reuse MAC addresses!), in bridge
709: mode. Two disks are provided, and they are both writable; the bits
710: are stored in files and Xen attaches them to a vnd(4) device in the
711: dom0 on domain creation. The system treats xbd0 as the boot device
712: without needing explicit configuration.
713:
714: By default xm looks for domain config files in /usr/pkg/etc/xen. Note
715: that "xm create" takes the name of a config file, while other commands
716: take the name of a domain. To create the domain, connect to the
717: console, create the domain while attaching the console, shutdown the
718: domain, and see if it has finished stopping, do (or xl with Xen >=
719: 4.2):
720:
721: xm create foo
722: xm console foo
723: xm create -c foo
724: xm shutdown foo
725: xm list
726:
727: Typing ^] will exit the console session. Shutting down a domain is
728: equivalent to pushing the power button; a NetBSD domU will receive a
729: power-press event and do a clean shutdown. Shutting down the dom0
730: will trigger controlled shutdowns of all configured domUs.
731:
732: domU kernels
733: ------------
734:
735: On a physical computer, the BIOS reads sector 0, and a chain of boot
736: loaders finds and loads a kernel. Normally this comes from the root
737: file system. With Xen domUs, the process is totally different. The
738: normal path is for the domU kernel to be a file in the dom0's
739: file system. At the request of the dom0, Xen loads that kernel into a
740: new domU instance and starts execution. While domU kernels can be
741: anyplace, reasonable places to store domU kernels on the dom0 are in /
742: (so they are near the dom0 kernel), in /usr/pkg/etc/xen (near the
743: config files), or in /u0/xen (where the vdisks are).
744:
745: Note that loading the domU kernel from the dom0 implies that boot
746: blocks, /boot, /boot.cfg, and so on are all ignored in the domU.
747: See the VPS section near the end for discussion of alternate ways to
748: obtain domU kernels.
749:
750: CPU and memory
751: --------------
752:
753: A domain is provided with some number of vcpus, less than the number
754: of CPUs seen by the hypervisor. (For a dom0, this is controlled by
755: the boot argument "dom0_max_vcpus=1".) For a domU, it is controlled
756: from the config file by the "vcpus = N" directive.
757:
758: A domain is provided with memory; this is controlled in the config
759: file by "memory = N" (in megabytes). In the straightforward case, the
760: sum of the the memory allocated to the dom0 and all domUs must be less
761: than the available memory.
762:
763: Xen also provides a "balloon" driver, which can be used to let domains
764: use more memory temporarily. TODO: Explain better, and explain how
765: well it works with NetBSD.
766:
767: Virtual disks
768: -------------
769:
770: With the file/vnd style, typically one creates a directory,
771: e.g. /u0/xen, on a disk large enough to hold virtual disks for all
772: domUs. Then, for each domU disk, one writes zeros to a file that then
773: serves to hold the virtual disk's bits; a suggested name is foo-xbd0
774: for the first virtual disk for the domU called foo. Writing zeros to
775: the file serves two purposes. One is that preallocating the contents
776: improves performance. The other is that vnd on sparse files has
777: failed to work. TODO: give working/notworking NetBSD versions for
778: sparse vnd and gnats reference. Note that the use of file/vnd for Xen
779: is not really different than creating a file-backed virtual disk for
780: some other purpose, except that xentools handles the vnconfig
781: commands. To create an empty 4G virtual disk, simply do
782:
783: dd if=/dev/zero of=foo-xbd0 bs=1m count=4096
784:
785: Do not use qemu-img-xen, because this will create sparse file. There
786: have been recent (2015) reports of sparse vnd(4) devices causing
787: lockups, but there is apparently no PR.
788:
789: With the lvm style, one creates logical devices. They are then used
790: similarly to vnds. TODO: Add an example with lvm.
791:
792: In domU config files, the disks are defined as a sequence of 3-tuples.
793: The first element is "method:/path/to/disk". Common methods are
794: "file:" for file-backed vnd. and "phy:" for something that is already
795: a (TODO: character or block) device.
796:
797: The second element is an artifact of how virtual disks are passed to
798: Linux, and a source of confusion with NetBSD Xen usage. Linux domUs
799: are given a device name to associate with the disk, and values like
800: "hda1" or "sda1" are common. In a NetBSD domU, the first disk appears
801: as xbd0, the second as xbd1, and so on. However, xm/xl demand a
802: second argument. The name given is converted to a major/minor by
803: calling stat(2) on the name in /dev and this is passed to the domU.
804: In the general case, the dom0 and domU can be different operating
805: systems, and it is an unwarranted assumption that they have consistent
806: numbering in /dev, or even that the dom0 OS has a /dev. With NetBSD
807: as both dom0 and domU, using values of 0x0 for the first disk and 0x1
808: for the second works fine and avoids this issue. For a GNU/Linux
809: guest, one can create /dev/hda1 in /dev, or to pass 0x301 for
810: /dev/hda1.
811:
812: The third element is "w" for writable disks, and "r" for read-only
813: disks.
814:
815: Note that NetBSD by default creates only vnd[0123]. If you need more
816: than 4 total virtual disks at a time, run e.g. "./MAKEDEV vnd4" in the
817: dom0.
818:
819: Note that NetBSD by default creates only xbd[0123]. If you need more
820: virtual disks in a domU, run e.g. "./MAKEDEV xbd4" in the domU.
821:
822: Virtual Networking
823: ------------------
824:
825: Xen provides virtual Ethernets, each of which connects the dom0 and a
826: domU. For each virtual network, there is an interface "xvifN.M" in
827: the dom0, and in domU index N, a matching interface xennetM (NetBSD
828: name). The interfaces behave as if there is an Ethernet with two
829: adapters connected. From this primitive, one can construct various
830: configurations. We focus on two common and useful cases for which
831: there are existing scripts: bridging and NAT.
832:
833: With bridging (in the example above), the domU perceives itself to be
834: on the same network as the dom0. For server virtualization, this is
835: usually best. Bridging is accomplished by creating a bridge(4) device
836: and adding the dom0's physical interface and the various xvifN.0
837: interfaces to the bridge. One specifies "bridge=bridge0" in the domU
838: config file. The bridge must be set up already in the dom0; an
839: example /etc/ifconfig.bridge0 is:
840:
841: create
842: up
843: !brconfig bridge0 add wm0
844:
845: With NAT, the domU perceives itself to be behind a NAT running on the
846: dom0. This is often appropriate when running Xen on a workstation.
847: TODO: NAT appears to be configured by "vif = [ '' ]".
848:
849: The MAC address specified is the one used for the interface in the new
850: domain. The interface in dom0 will use this address XOR'd with
851: 00:00:00:01:00:00. Random MAC addresses are assigned if not given.
852:
853: Sizing domains
854: --------------
855:
856: Modern x86 hardware has vast amounts of resources. However, many
857: virtual servers can function just fine on far less. A system with
858: 256M of RAM and a 4G disk can be a reasonable choice. Note that it is
859: far easier to adjust virtual resources than physical ones. For
860: memory, it's just a config file edit and a reboot. For disk, one can
861: create a new file and vnconfig it (or lvm), and then dump/restore,
862: just like updating physical disks, but without having to be there and
863: without those pesky connectors.
864:
865: Starting domains automatically
866: ------------------------------
867:
868: To start domains foo at bar at boot and shut them down cleanly on dom0
869: shutdown, in rc.conf add:
870:
871: xendomains="foo bar"
872:
873: Note that earlier versions of the xentools41 xendomains rc.d script
874: used xl, when one should use xm with 4.1.
875:
876: Creating specific unprivileged domains (domU)
877: =============================================
878:
879: Creating domUs is almost entirely independent of operating system. We
880: have already presented the basics of config files. Note that you must
881: have already completed the dom0 setup so that "xl list" (or "xm list")
882: works.
883:
884: Creating an unprivileged NetBSD domain (domU)
885: ---------------------------------------------
886:
887: See the earlier config file, and adjust memory. Decide on how much
888: storage you will provide, and prepare it (file or lvm).
889:
890: While the kernel will be obtained from the dom0 file system, the same
891: file should be present in the domU as /netbsd so that tools like
892: savecore(8) can work. (This is helpful but not necessary.)
893:
894: The kernel must be specifically for Xen and for use as a domU. The
895: i386 and amd64 provide the following kernels:
896:
897: i386 XEN3_DOMU
898: i386 XEN3PAE_DOMU
899: amd64 XEN3_DOMU
900:
901: Unless using Xen 3.1 (and you shouldn't) with i386-mode Xen, you must
902: use the PAE version of the i386 kernel.
903:
904: This will boot NetBSD, but this is not that useful if the disk is
905: empty. One approach is to unpack sets onto the disk outside of xen
906: (by mounting it, just as you would prepare a physical disk for a
907: system you can't run the installer on).
908:
909: A second approach is to run an INSTALL kernel, which has a miniroot
910: and can load sets from the network. To do this, copy the INSTALL
911: kernel to / and change the kernel line in the config file to:
912:
913: kernel = "/home/bouyer/netbsd-INSTALL_XEN3_DOMU"
914:
915: Then, start the domain as "xl create -c configname".
916:
917: Alternatively, if you want to install NetBSD/Xen with a CDROM image, the following
918: line should be used in the config file.
919:
920: disk = [ 'phy:/dev/wd0e,0x1,w', 'phy:/dev/cd0a,0x2,r' ]
921:
922: After booting the domain, the option to install via CDROM may be
923: selected. The CDROM device should be changed to `xbd1d`.
924:
925: Once done installing, "halt -p" the new domain (don't reboot or halt,
926: it would reload the INSTALL_XEN3_DOMU kernel even if you changed the
927: config file), switch the config file back to the XEN3_DOMU kernel,
928: and start the new domain again. Now it should be able to use "root on
929: xbd0a" and you should have a, functional NetBSD domU.
930:
931: TODO: check if this is still accurate.
932: When the new domain is booting you'll see some warnings about *wscons*
933: and the pseudo-terminals. These can be fixed by editing the files
934: `/etc/ttys` and `/etc/wscons.conf`. You must disable all terminals in
935: `/etc/ttys`, except *console*, like this:
936:
937: console "/usr/libexec/getty Pc" vt100 on secure
938: ttyE0 "/usr/libexec/getty Pc" vt220 off secure
939: ttyE1 "/usr/libexec/getty Pc" vt220 off secure
940: ttyE2 "/usr/libexec/getty Pc" vt220 off secure
941: ttyE3 "/usr/libexec/getty Pc" vt220 off secure
942:
943: Finally, all screens must be commented out from `/etc/wscons.conf`.
944:
945: It is also desirable to add
946:
947: powerd=YES
948:
949: in rc.conf. This way, the domain will be properly shut down if
950: `xm shutdown -R` or `xm shutdown -H` is used on the dom0.
951:
952: It is not strictly necessary to have a kernel (as /netbsd) in the domU
953: file system. However, various programs (e.g. netstat) will use that
954: kernel to look up symbols to read from kernel virtual memory. If
955: /netbsd is not the running kernel, those lookups will fail. (This is
956: not really a Xen-specific issue, but because the domU kernel is
957: obtained from the dom0, it is far more likely to be out of sync or
958: missing with Xen.)
959:
960: Creating an unprivileged Linux domain (domU)
961: --------------------------------------------
962:
963: Creating unprivileged Linux domains isn't much different from
964: unprivileged NetBSD domains, but there are some details to know.
965:
966: First, the second parameter passed to the disk declaration (the '0x1' in
967: the example below)
968:
969: disk = [ 'phy:/dev/wd0e,0x1,w' ]
970:
971: does matter to Linux. It wants a Linux device number here (e.g. 0x300
972: for hda). Linux builds device numbers as: (major \<\< 8 + minor).
973: So, hda1 which has major 3 and minor 1 on a Linux system will have
974: device number 0x301. Alternatively, devices names can be used (hda,
975: hdb, ...) as xentools has a table to map these names to devices
976: numbers. To export a partition to a Linux guest we can use:
977:
978: disk = [ 'phy:/dev/wd0e,0x300,w' ]
979: root = "/dev/hda1 ro"
980:
981: and it will appear as /dev/hda on the Linux system, and be used as root
982: partition.
983:
984: To install the Linux system on the partition to be exported to the
985: guest domain, the following method can be used: install
986: sysutils/e2fsprogs from pkgsrc. Use mke2fs to format the partition
987: that will be the root partition of your Linux domain, and mount it.
988: Then copy the files from a working Linux system, make adjustments in
989: `/etc` (fstab, network config). It should also be possible to extract
990: binary packages such as .rpm or .deb directly to the mounted partition
991: using the appropriate tool, possibly running under NetBSD's Linux
992: emulation. Once the file system has been populated, umount it. If
993: desirable, the file system can be converted to ext3 using tune2fs -j.
994: It should now be possible to boot the Linux guest domain, using one of
995: the vmlinuz-\*-xenU kernels available in the Xen binary distribution.
996:
997: To get the Linux console right, you need to add:
998:
999: extra = "xencons=tty1"
1000:
1001: to your configuration since not all Linux distributions auto-attach a
1002: tty to the xen console.
1003:
1004: Creating an unprivileged Solaris domain (domU)
1005: ----------------------------------------------
1006:
1007: See possibly outdated
1008: [Solaris domU instructions](/ports/xen/howto-solaris/).
1009:
1010:
1011: PCI passthrough: Using PCI devices in guest domains
1012: ---------------------------------------------------
1013:
1014: The dom0 can give other domains access to selected PCI
1015: devices. This can allow, for example, a non-privileged domain to have
1016: access to a physical network interface or disk controller. However,
1017: keep in mind that giving a domain access to a PCI device most likely
1018: will give the domain read/write access to the whole physical memory,
1019: as PCs don't have an IOMMU to restrict memory access to DMA-capable
1020: device. Also, it's not possible to export ISA devices to non-dom0
1021: domains, which means that the primary VGA adapter can't be exported.
1022: A guest domain trying to access the VGA registers will panic.
1023:
1024: If the dom0 is NetBSD, it has to be running Xen 3.1, as support has
1025: not been ported to later versions at this time.
1026:
1027: For a PCI device to be exported to a domU, is has to be attached to
1028: the "pciback" driver in dom0. Devices passed to the dom0 via the
1029: pciback.hide boot parameter will attach to "pciback" instead of the
1030: usual driver. The list of devices is specified as "(bus:dev.func)",
1031: where bus and dev are 2-digit hexadecimal numbers, and func a
1032: single-digit number:
1033:
1034: pciback.hide=(00:0a.0)(00:06.0)
1035:
1036: pciback devices should show up in the dom0's boot messages, and the
1037: devices should be listed in the `/kern/xen/pci` directory.
1038:
1039: PCI devices to be exported to a domU are listed in the "pci" array of
1040: the domU's config file, with the format "0000:bus:dev.func".
1041:
1042: pci = [ '0000:00:06.0', '0000:00:0a.0' ]
1043:
1044: In the domU an "xpci" device will show up, to which one or more pci
1045: buses will attach. Then the PCI drivers will attach to PCI buses as
1046: usual. Note that the default NetBSD DOMU kernels do not have "xpci"
1047: or any PCI drivers built in by default; you have to build your own
1048: kernel to use PCI devices in a domU. Here's a kernel config example;
1049: note that only the "xpci" lines are unusual.
1050:
1051: include "arch/i386/conf/XEN3_DOMU"
1052:
1053: # Add support for PCI buses to the XEN3_DOMU kernel
1054: xpci* at xenbus ?
1055: pci* at xpci ?
1056:
1057: # PCI USB controllers
1058: uhci* at pci? dev ? function ? # Universal Host Controller (Intel)
1059:
1060: # USB bus support
1061: usb* at uhci?
1062:
1063: # USB Hubs
1064: uhub* at usb?
1065: uhub* at uhub? port ? configuration ? interface ?
1066:
1067: # USB Mass Storage
1068: umass* at uhub? port ? configuration ? interface ?
1069: wd* at umass?
1070: # SCSI controllers
1071: ahc* at pci? dev ? function ? # Adaptec [23]94x, aic78x0 SCSI
1072:
1073: # SCSI bus support (for both ahc and umass)
1074: scsibus* at scsi?
1075:
1076: # SCSI devices
1077: sd* at scsibus? target ? lun ? # SCSI disk drives
1078: cd* at scsibus? target ? lun ? # SCSI CD-ROM drives
1079:
1080:
1081: NetBSD as a domU in a VPS
1082: =========================
1083:
1084: The bulk of the HOWTO is about using NetBSD as a dom0 on your own
1085: hardware. This section explains how to deal with Xen in a domU as a
1086: virtual private server where you do not control or have access to the
1087: dom0. This is not intended to be an exhaustive list of VPS providers;
1088: only a few are mentioned that specifically support NetBSD.
1089:
1090: VPS operators provide varying degrees of access and mechanisms for
1091: configuration. The big issue is usually how one controls which kernel
1092: is booted, because the kernel is nominally in the dom0 file system (to
1093: which VPS users do not normally have access). A second issue is how
1094: to install NetBSD.
1095: A VPS user may want to compile a kernel for security updates, to run
1096: npf, run IPsec, or any other reason why someone would want to change
1097: their kernel.
1098:
1099: One approach is to have an administrative interface to upload a kernel,
1100: or to select from a prepopulated list. Other approaches are pygrub
1101: (deprecated) and pvgrub, which are ways to have a bootloader obtain a
1102: kernel from the domU file system. This is closer to a regular physical
1103: computer, where someone who controls a machine can replace the kernel.
1104:
1105: A second issue is multiple CPUs. With NetBSD 6, domUs support
1106: multiple vcpus, and it is typical for VPS providers to enable multiple
1107: CPUs for NetBSD domUs.
1108:
1109: pygrub
1110: -------
1111:
1112: pygrub runs in the dom0 and looks into the domU file system. This
1113: implies that the domU must have a kernel in a file system in a format
1114: known to pygrub. As of 2014, pygrub seems to be of mostly historical
1115: interest.
1116:
1117: pvgrub
1118: ------
1119:
1120: pvgrub is a version of grub that uses PV operations instead of BIOS
1121: calls. It is booted from the dom0 as the domU kernel, and then reads
1122: /grub/menu.lst and loads a kernel from the domU file system.
1123:
1124: [Panix](http://www.panix.com/) lets users use pvgrub. Panix reports
1125: that pvgrub works with FFsv2 with 16K/2K and 32K/4K block/frag sizes
1126: (and hence with defaults from "newfs -O 2"). See [Panix's pvgrub
1127: page](http://www.panix.com/v-colo/grub.html), which describes only
1128: Linux but should be updated to cover NetBSD :-).
1129:
1130: [prgmr.com](http://prgmr.com/) also lets users with pvgrub to boot
1131: their own kernel. See then [prgmr.com NetBSD
1132: HOWTO](http://wiki.prgmr.com/mediawiki/index.php/NetBSD_as_a_DomU)
1133: (which is in need of updating).
1134:
1135: It appears that [grub's FFS
1136: code](http://xenbits.xensource.com/hg/xen-unstable.hg/file/bca284f67702/tools/libfsimage/ufs/fsys_ufs.c)
1137: does not support all aspects of modern FFS, but there are also reports
1138: that FFSv2 works fine. At prgmr, typically one has an ext2 or FAT
1139: partition for the kernel with the intent that grub can understand it,
1140: which leads to /netbsd not being the actual kernel. One must remember
1141: to update the special boot partition.
1142:
1143: Amazon
1144: ------
1145:
1146: See the [Amazon EC2 page](../amazon_ec2/).
1147:
1148: Using npf
1149: ---------
1150:
1151: In standard kernels, npf is a module, and thus cannot be loaded in a
1152: DOMU kernel.
1153:
1154: TODO: Explain how to compile npf into a custom kernel, answering (but
1155: note that the problem was caused by not booting the right kernel)
1156: [this email to
1157: netbsd-users](http://mail-index.netbsd.org/netbsd-users/2014/12/26/msg015576.html).
1158:
1159: TODO items for improving NetBSD/xen
1160: ===================================
1161:
1162: * Make the NetBSD dom0 kernel work with SMP.
1163: * Test the Xen 4.5 packages adequately to be able to recommend them as
1164: the standard approach.
1165: * Get PCI passthrough working on Xen 4.5
1166: * Get pvgrub into pkgsrc, either via xentools or separately.
1167: * grub
1168: * Check/add support to pkgsrc grub2 for UFS2 and arbitrary
1169: fragsize/blocksize (UFS2 support may be present; the point is to
1170: make it so that with any UFS1/UFS2 file system setup that works
1171: with NetBSD grub will also work).
1172: See [pkg/40258](http://gnats.netbsd.org/40258).
1173: * Push patches upstream.
1174: * Get UFS2 patches into pvgrub.
1175: * Add support for PV ops to a version of /boot, and make it usable as
1176: a kernel in Xen, similar to pvgrub.
1177: * Solve somehow the issue with modules for GENERIC not being loadable
1178: in a Xen dom0 or domU kernel.
1179:
1180: Random pointers
1181: ===============
1182:
1183: This section contains links from elsewhere not yet integrated into the
1184: HOWTO, and other guides.
1185:
1186: * http://www.lumbercartel.ca/library/xen/
1187: * http://pbraun.nethence.com/doc/sysutils/xen_netbsd_dom0.html
1188: * https://gmplib.org/~tege/xen.html
CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb