Annotation of wikisrc/ports/xen/howto.mdwn, revision 1.90
1.5 mspo 1: Introduction
1.13 gdt 2: ============
1.1 mspo 3:
4: [![[Xen
1.57 gdt 5: screenshot]](http://www.netbsd.org/gallery/in-Action/hubertf-xens.png)](http://www.netbsd.org/gallery/in-Action/hubertf-xen.png)
1.1 mspo 6:
1.58 gdt 7: Xen is a hypervisor (or virtual machine monitor) for x86 hardware
1.12 gdt 8: (i686-class or higher), which supports running multiple guest
1.58 gdt 9: operating systems on a single physical machine. Xen is a Type 1 or
10: bare-metal hypervisor; one uses the Xen kernel to control the CPU,
11: memory and console, a dom0 operating system which mediates access to
12: other hardware (e.g., disks, network, USB), and one or more domU
13: operating systems which operate in an unprivileged virtualized
14: environment. IO requests from the domU systems are forwarded by the
15: hypervisor (Xen) to the dom0 to be fulfilled.
1.12 gdt 16:
17: Xen supports two styles of guests. The original is Para-Virtualized
18: (PV) which means that the guest OS does not attempt to access hardware
19: directly, but instead makes hypercalls to the hypervisor. This is
20: analogous to a user-space program making system calls. (The dom0
21: operating system uses PV calls for some functions, such as updating
22: memory mapping page tables, but has direct hardware access for disk
23: and network.) PV guests must be specifically coded for Xen.
24:
25: The more recent style is HVM, which means that the guest does not have
26: code for Xen and need not be aware that it is running under Xen.
27: Attempts to access hardware registers are trapped and emulated. This
28: style is less efficient but can run unmodified guests.
29:
1.29 gdt 30: Generally any amd64 machine will work with Xen and PV guests. In
31: theory i386 computers without amd64 support can be used for Xen <=
32: 4.2, but we have no recent reports of this working (this is a hint).
33: For HVM guests, the VT or VMX cpu feature (Intel) or SVM/HVM/VT
34: (amd64) is needed; "cpuctl identify 0" will show this. TODO: Clean up
35: and check the above features.
1.19 gdt 36:
1.27 jnemeth 37: At boot, the dom0 kernel is loaded as a module with Xen as the kernel.
1.12 gdt 38: The dom0 can start one or more domUs. (Booting is explained in detail
39: in the dom0 section.)
40:
41: NetBSD supports Xen in that it can serve as dom0, be used as a domU,
42: and that Xen kernels and tools are available in pkgsrc. This HOWTO
43: attempts to address both the case of running a NetBSD dom0 on hardware
1.24 gdt 44: and running domUs under it (NetBSD and other), and also running NetBSD
45: as a domU in a VPS.
1.12 gdt 46:
1.20 gdt 47: Some versions of Xen support "PCI passthrough", which means that
48: specific PCI devices can be made available to a specific domU instead
49: of the dom0. This can be useful to let a domU run X11, or access some
50: network interface or other peripheral.
51:
1.54 gdt 52: NetBSD used to support Xen2; this has been removed.
53:
1.12 gdt 54: Prerequisites
1.13 gdt 55: -------------
1.12 gdt 56:
57: Installing NetBSD/Xen is not extremely difficult, but it is more
58: complex than a normal installation of NetBSD.
1.15 gdt 59: In general, this HOWTO is occasionally overly restrictive about how
60: things must be done, guiding the reader to stay on the established
61: path when there are no known good reasons to stray.
1.12 gdt 62:
63: This HOWTO presumes a basic familiarity with the Xen system
1.16 gdt 64: architecture. This HOWTO presumes familiarity with installing NetBSD
65: on i386/amd64 hardware and installing software from pkgsrc.
1.27 jnemeth 66: See also the [Xen website](http://www.xenproject.org/).
1.1 mspo 67:
1.15 gdt 68: Versions of Xen and NetBSD
69: ==========================
70:
1.27 jnemeth 71: Most of the installation concepts and instructions are independent
72: of Xen version and NetBSD version. This section gives advice on
73: which version to choose. Versions not in pkgsrc and older unsupported
74: versions of NetBSD are intentionally ignored.
1.15 gdt 75:
76: Xen
77: ---
78:
79: In NetBSD, xen is provided in pkgsrc, via matching pairs of packages
80: xenkernel and xentools. We will refer only to the kernel versions,
81: but note that both packages must be installed together and must have
82: matching versions.
83:
84: xenkernel3 and xenkernel33 provide Xen 3.1 and 3.3. These no longer
1.20 gdt 85: receive security patches and should not be used. Xen 3.1 supports PCI
1.29 gdt 86: passthrough. Xen 3.1 supports non-PAE on i386.
1.15 gdt 87:
88: xenkernel41 provides Xen 4.1. This is no longer maintained by Xen,
89: but as of 2014-12 receives backported security patches. It is a
90: reasonable although trailing-edge choice.
91:
92: xenkernel42 provides Xen 4.2. This is maintained by Xen, but old as
93: of 2014-12.
94:
1.85 gdt 95: xenkernel45 provides Xen 4.5. This is new to pkgsrc as of 2015-01 and
96: not yet recommended for other than experimental/testing use.
97:
1.15 gdt 98: Ideally newer versions of Xen will be added to pkgsrc.
99:
1.85 gdt 100: Note that NetBSD support is called XEN3. It works with Xen 3 and Xen
101: 4 because the hypercall interface has been stable.
1.20 gdt 102:
1.19 gdt 103: Xen command program
104: -------------------
105:
1.79 gdt 106: Early Xen used a program called xm to manipulate the system from the
1.19 gdt 107: dom0. Starting in 4.1, a replacement program with similar behavior
1.79 gdt 108: called xl is provided, but it does not work well in 4.1. In 4.2, both
109: xm and xl work fine. 4.4 is the last version that has xm. You must
110: choose one or the other, because it affects which daemons you run.
1.19 gdt 111:
1.15 gdt 112: NetBSD
113: ------
114:
115: The netbsd-5, netbsd-6, netbsd-7, and -current branches are all
116: reasonable choices, with more or less the same considerations for
117: non-Xen use. Therefore, netbsd-6 is recommended as the stable version
1.29 gdt 118: of the most recent release for production use. For those wanting to
119: learn Xen or without production stability concerns, netbsd-7 is likely
120: most appropriate.
1.15 gdt 121:
122: As of NetBSD 6, a NetBSD domU will support multiple vcpus. There is
123: no SMP support for NetBSD as dom0. (The dom0 itself doesn't really
124: need SMP; the lack of support is really a problem when using a dom0 as
125: a normal computer.)
126:
1.18 gdt 127: Architecture
128: ------------
129:
1.29 gdt 130: Xen itself can run on i386 or amd64 machines. (Practically, almost
131: any computer where one would want to run Xen supports amd64.) If
132: using an i386 NetBSD kernel for the dom0, PAE is required (PAE
133: versions are built by default). While i386 dom0 works fine, amd64 is
134: recommended as more normal.
135:
136: Xen 4.2 is the last version to support i386 as a host. TODO: Clarify
137: if this is about the CPU having to be amd64, or about the dom0 kernel
138: having to be amd64.
139:
140: One can then run i386 domUs and amd64 domUs, in any combination. If
141: running an i386 NetBSD kernel as a domU, the PAE version is required.
142: (Note that emacs (at least) fails if run on i386 with PAE when built
143: without, and vice versa, presumably due to bugs in the undump code.)
1.18 gdt 144:
1.89 gdt 145: Stability
146: ---------
147:
148: Mostly, NetBSD as a dom0 or domU is quite stable.
149: However, there are some open PRs indicating problems.
150:
151: - http://gnats.netbsd.org/48125
152: - http://gnats.netbsd.org/47720
153:
154: Note also that there are issues with sparse vnd(4) instances, but
155: these are not about Xen.
156:
1.15 gdt 157: Recommendation
158: --------------
159:
1.18 gdt 160: Therefore, this HOWTO recommends running xenkernel42 (and xentools42),
1.30 gdt 161: xl, the NetBSD 6 stable branch, and to use an amd64 kernel as the
162: dom0. Either the i386 or amd64 of NetBSD may be used as domUs.
1.15 gdt 163:
1.36 gdt 164: Build problems
165: --------------
166:
167: Ideally, all versions of Xen in pkgsrc would build on all versions of
168: NetBSD on both i386 and amd64. However, that isn't the case. Besides
169: aging code and aging compilers, qemu (included in xentools for HVM
1.62 gdt 170: support) is difficult to build. The following are known to work or FAIL:
1.36 gdt 171:
1.62 gdt 172: xenkernel3 netbsd-5 amd64
1.63 gdt 173: xentools3 netbsd-5 amd64
1.64 gdt 174: xentools3=hvm netbsd-5 amd64 ????
1.62 gdt 175: xenkernel33 netbsd-5 amd64
1.63 gdt 176: xentools33 netbsd-5 amd64
1.36 gdt 177: xenkernel41 netbsd-5 amd64
178: xentools41 netbsd-5 amd64
1.62 gdt 179: xenkernel42 netbsd-5 amd64
1.64 gdt 180: xentools42 netbsd-5 amd64
1.62 gdt 181:
182: xenkernel3 netbsd-6 i386 FAIL
183: xentools3 netbsd-6 i386
1.63 gdt 184: xentools3-hvm netbsd-6 i386 FAIL (dependencies fail)
185: xenkernel33 netbsd-6 i386
186: xentools33 netbsd-6 i386
1.36 gdt 187: xenkernel41 netbsd-6 i386
188: xentools41 netbsd-6 i386
1.63 gdt 189: xenkernel42 netbsd-6 i386
1.64 gdt 190: xentools42 netbsd-6 i386 *MIXED
191:
1.69 gdt 192: (all 3 and 33 seem to FAIL)
193: xenkernel41 netbsd-7 i386
194: xentools41 netbsd-7 i386
195: xenkernel42 netbsd-7 i386
196: xentools42 netbsd-7 i386 ??FAIL
197:
1.64 gdt 198: (*On netbsd-6 i386, there is a xentools42 in the 2014Q3 official builds,
199: but it does not build for gdt.)
1.36 gdt 200:
1.15 gdt 201: NetBSD as a dom0
202: ================
203:
204: NetBSD can be used as a dom0 and works very well. The following
205: sections address installation, updating NetBSD, and updating Xen.
1.19 gdt 206: Note that it doesn't make sense to talk about installing a dom0 OS
207: without also installing Xen itself. We first address installing
208: NetBSD, which is not yet a dom0, and then adding Xen, pivoting the
209: NetBSD install to a dom0 install by just changing the kernel and boot
210: configuration.
1.15 gdt 211:
1.45 gdt 212: For experimenting with Xen, a machine with as little as 1G of RAM and
213: 100G of disk can work. For running many domUs in productions, far
214: more will be needed.
215:
1.15 gdt 216: Styles of dom0 operation
217: ------------------------
218:
219: There are two basic ways to use Xen. The traditional method is for
220: the dom0 to do absolutely nothing other than providing support to some
221: number of domUs. Such a system was probably installed for the sole
222: purpose of hosting domUs, and sits in a server room on a UPS.
223:
224: The other way is to put Xen under a normal-usage computer, so that the
225: dom0 is what the computer would have been without Xen, perhaps a
226: desktop or laptop. Then, one can run domUs at will. Purists will
227: deride this as less secure than the previous approach, and for a
228: computer whose purpose is to run domUs, they are right. But Xen and a
229: dom0 (without domUs) is not meaingfully less secure than the same
230: things running without Xen. One can boot Xen or boot regular NetBSD
231: alternately with little problems, simply refraining from starting the
232: Xen daemons when not running Xen.
233:
234: Note that NetBSD as dom0 does not support multiple CPUs. This will
1.51 gdt 235: limit the performance of the Xen/dom0 workstation approach. In theory
236: the only issue is that the "backend drivers" are not yet MPSAFE:
237: http://mail-index.netbsd.org/netbsd-users/2014/08/29/msg015195.html
1.15 gdt 238:
1.19 gdt 239: Installation of NetBSD
240: ----------------------
1.13 gdt 241:
1.19 gdt 242: First,
1.27 jnemeth 243: [install NetBSD/amd64](/guide/inst/)
1.19 gdt 244: just as you would if you were not using Xen.
245: However, the partitioning approach is very important.
246:
247: If you want to use RAIDframe for the dom0, there are no special issues
248: for Xen. Typically one provides RAID storage for the dom0, and the
1.22 gdt 249: domU systems are unaware of RAID. The 2nd-stage loader bootxx_* skips
250: over a RAID1 header to find /boot from a filesystem within a RAID
251: partition; this is no different when booting Xen.
1.19 gdt 252:
253: There are 4 styles of providing backing storage for the virtual disks
254: used by domUs: raw partitions, LVM, file-backed vnd(4), and SAN,
255:
256: With raw partitions, one has a disklabel (or gpt) partition sized for
257: each virtual disk to be used by the domU. (If you are able to predict
258: how domU usage will evolve, please add an explanation to the HOWTO.
259: Seriously, needs tend to change over time.)
260:
1.27 jnemeth 261: One can use [lvm(8)](/guide/lvm/) to create logical devices to use
262: for domU disks. This is almost as efficient as raw disk partitions
263: and more flexible. Hence raw disk partitions should typically not
264: be used.
1.19 gdt 265:
266: One can use files in the dom0 filesystem, typically created by dd'ing
267: /dev/zero to create a specific size. This is somewhat less efficient,
268: but very convenient, as one can cp the files for backup, or move them
269: between dom0 hosts.
270:
271: Finally, in theory one can place the files backing the domU disks in a
272: SAN. (This is an invitation for someone who has done this to add a
273: HOWTO page.)
1.1 mspo 274:
1.19 gdt 275: Installation of Xen
276: -------------------
1.1 mspo 277:
1.20 gdt 278: In the dom0, install sysutils/xenkernel42 and sysutils/xentools42 from
279: pkgsrc (or another matching pair).
280: See [the pkgsrc
281: documentation](http://www.NetBSD.org/docs/pkgsrc/) for help with pkgsrc.
282:
283: For Xen 3.1, support for HVM guests is in sysutils/xentool3-hvm. More
284: recent versions have HVM support integrated in the main xentools
285: package. It is entirely reasonable to run only PV guests.
286:
287: Next you need to install the selected Xen kernel itself, which is
288: installed by pkgsrc as "/usr/pkg/xen*-kernel/xen.gz". Copy it to /.
289: For debugging, one may copy xen-debug.gz; this is conceptually similar
290: to DIAGNOSTIC and DEBUG in NetBSD. xen-debug.gz is basically only
291: useful with a serial console. Then, place a NetBSD XEN3_DOM0 kernel
292: in /, copied from releasedir/amd64/binary/kernel/netbsd-XEN3_DOM0.gz
1.75 gdt 293: of a NetBSD build. If using i386, use
294: releasedir/i386/binary/kernel/netbsd-XEN3PAE_DOM0.gz. (If using Xen
295: 3.1 and i386, you may use XEN3_DOM0 with the non-PAE Xen. But you
296: should not use Xen 3.1.) Both xen and the NetBSD kernel may be (and
297: typically are) left compressed.
298:
299: In a dom0 kernel, kernfs is mandatory for xend to comunicate with the
300: kernel, so ensure that /kern is in fstab. TODO: Say this is default,
301: or file a PR and give a reference.
1.20 gdt 302:
303: Because you already installed NetBSD, you have a working boot setup
304: with an MBR bootblock, either bootxx_ffsv1 or bootxx_ffsv2 at the
305: beginning of your root filesystem, /boot present, and likely
306: /boot.cfg. (If not, fix before continuing!)
307:
1.76 gdt 308: Add a line to to /boot.cfg to boot Xen. See boot.cfg(5) for an
309: example. The basic line is
1.20 gdt 310:
1.37 gdt 311: menu=Xen:load /netbsd-XEN3_DOM0.gz console=pc;multiboot /xen.gz dom0_mem=256M
1.20 gdt 312:
313: which specifies that the dom0 should have 256M, leaving the rest to be
1.77 gdt 314: allocated for domUs. To use a serial console, use
315:
316: menu=Xen:load /netbsd-XEN3_DOM0.gz console=com0;multiboot /xen.gz dom0_mem=256M console=com1 com1=9600,8n1
317:
318: which will use the first serial port for Xen (which counts starting
319: from 1), forcing speed/parity, and also for NetBSD (which counts
320: starting at 0). In an attempt to add performance, one can also add
1.37 gdt 321:
322: dom0_max_vcpus=1 dom0_vcpus_pin
323:
324: to force only one vcpu to be provided (since NetBSD dom0 can't use
325: more) and to pin that vcpu to a physical cpu. TODO: benchmark this.
1.20 gdt 326:
327: As with non-Xen systems, you should have a line to boot /netbsd (a
328: kernel that works without Xen) and fallback versions of the non-Xen
329: kernel, Xen, and the dom0 kernel.
1.1 mspo 330:
1.76 gdt 331: Now, reboot so that you are running a DOM0 kernel under Xen, rather
332: than GENERIC without Xen.
333:
1.54 gdt 334: Using grub (historic)
335: ---------------------
336:
337: Before NetBSD's native bootloader could support Xen, the use of
338: grub was recommended. If necessary, see the
339: [old grub information](/ports/xen/howto-grub/).
340:
1.28 gdt 341: The [HowTo on Installing into
342: RAID-1](http://mail-index.NetBSD.org/port-xen/2006/03/01/0010.html)
343: explains how to set up booting a dom0 with Xen using grub with
344: NetBSD's RAIDframe. (This is obsolete with the use of NetBSD's native
345: boot.)
346:
1.21 gdt 347: Configuring Xen
348: ---------------
349:
1.53 gdt 350: Xen logs will be in /var/log/xen.
351:
1.76 gdt 352: Now, you have a system that will boot Xen and the dom0 kernel, but not
353: do anything else special. Make sure that you have rebooted into Xen.
354: There will be no domUs, and none can be started because you still have
355: to configure the dom0 tools. The daemons which should be run vary
356: with Xen version and with whether one is using xm or xl. Note that
357: xend is for supporting "xm", and should only be used if you plan on
358: using "xm". Do NOT enable xend if you plan on using "xl" as it will
1.87 gdt 359: cause problems. Running xl without xencommons=YES (and starting it)
360: will result in a hang (so don't do that; follow the HOWTO!).
1.21 gdt 361:
1.43 gdt 362: The installation of NetBSD should already have created devices for xen
363: (xencons, xenevt), but if they are not present, create them:
364:
365: cd /dev && sh MAKEDEV xen
366:
1.31 gdt 367: TODO: Give 3.1 advice (or remove it from pkgsrc).
368:
369: For 3.3 (and thus xm), add to rc.conf (but note that you should have
370: installed 4.1 or 4.2):
371:
1.32 gdt 372: xend=YES
373: xenbackendd=YES
1.31 gdt 374:
1.33 gdt 375: For 4.1 (and thus xm; xl is believed not to work well), add to rc.conf:
1.31 gdt 376:
1.53 gdt 377: xencommons=YES
1.31 gdt 378: xend=YES
379:
1.56 gdt 380: (If you are using xentools41 from before 2014-12-26, change
381: rc.d/xendomains to use xm rather than xl.)
1.31 gdt 382:
1.33 gdt 383: For 4.2 with xm, add to rc.conf
384:
1.53 gdt 385: xencommons=YES
1.33 gdt 386: xend=YES
387:
1.79 gdt 388: For 4.2 with xl, add to rc.conf:
1.31 gdt 389:
1.53 gdt 390: xencommons=YES
1.31 gdt 391: TODO: explain if there is a xend replacement
392:
1.86 gdt 393: For 4.5 (and thus with xl), add to rc.conf:
394:
395: xencommons=YES
396: TODO: explain if there is a xend replacement
397:
1.31 gdt 398: TODO: Recommend for/against xen-watchdog.
1.27 jnemeth 399:
1.53 gdt 400: After you have configured the daemons and either started them (in the
1.79 gdt 401: order given) or rebooted, use xm or xl to inspect Xen's boot messages,
402: available resources, and running domains. An example with xm follows:
1.34 gdt 403:
1.43 gdt 404: # xm dmesg
405: [xen's boot info]
406: # xm info
407: [available memory, etc.]
408: # xm list
409: Name Id Mem(MB) CPU State Time(s) Console
410: Domain-0 0 64 0 r---- 58.1
1.33 gdt 411:
1.79 gdt 412: With xl, the commands are the same, and the output may be slightly
1.83 gdt 413: different. TODO: add example output for xl before the xm example,
414: after confirming on 4.2 and resolving the TODO about rc.conf.
1.79 gdt 415:
1.88 gdt 416: ### Issues with xencommons
417:
418: xencommons starts xenstored, which stores data on behalf of dom0 and
419: domUs. It does not currently work to stop and start xenstored.
420: Certainly all domUs should be shutdown first, following the sort order
421: of the rc.d scripts. However, the dom0 sets up state with xenstored,
422: and is not notified when xenstored exits, leading to not recreating
423: the state when the new xenstored starts. Until there's a mechanism to
424: make this work, one should not expect to be able to restart xenstored
425: (and thus xencommons). There is currently no reason to expect that
426: this will get fixed any time soon.
427:
1.41 gdt 428: anita (for testing NetBSD)
429: --------------------------
430:
1.82 gdt 431: With the setup so far (assuming 4.2/xl), one should be able to run
432: anita (see pkgsrc/misc/py-anita) to test NetBSD releases, by doing (as
433: root, because anita must create a domU):
434:
435: anita --vmm=xl test file:///usr/obj/i386/
436:
437: Alternatively, one can use --vmm=xm to use xm-based domU creation
438: instead (and must, on Xen <= 4.1). TODO: confirm that anita xl really works.
439:
1.40 gdt 440: Xen-specific NetBSD issues
441: --------------------------
442:
443: There are (at least) two additional things different about NetBSD as a
444: dom0 kernel compared to hardware.
445:
446: One is that modules are not usable in DOM0 kernels, so one must
447: compile in what's needed. It's not really that modules cannot work,
448: but that modules must be built for XEN3_DOM0 because some of the
449: defines change and the normal module builds don't do this. Basically,
450: enabling Xen changes the kernel ABI, and the module build system
451: doesn't cope with this.
452:
453: The other difference is that XEN3_DOM0 does not have exactly the same
454: options as GENERIC. While it is debatable whether or not this is a
455: bug, users should be aware of this and can simply add missing config
456: items if desired.
457:
1.15 gdt 458: Updating NetBSD in a dom0
459: -------------------------
460:
461: This is just like updating NetBSD on bare hardware, assuming the new
462: version supports the version of Xen you are running. Generally, one
463: replaces the kernel and reboots, and then overlays userland binaries
464: and adjusts /etc.
465:
466: Note that one must update both the non-Xen kernel typically used for
467: rescue purposes and the DOM0 kernel used with Xen.
468:
1.55 gdt 469: Converting from grub to /boot
470: -----------------------------
471:
472: These instructions were [TODO: will be] used to convert a system from
473: grub to /boot. The system was originally installed in February of
474: 2006 with a RAID1 setup and grub to boot Xen 2, and has been updated
475: over time. Before these commands, it was running NetBSD 6 i386, Xen
476: 4.1 and grub, much like the message linked earlier in the grub
477: section.
478:
479: # Install mbr bootblocks on both disks.
480: fdisk -i /dev/rwd0d
481: fdisk -i /dev/rwd1d
482: # Install NetBSD primary boot loader (/ is FFSv1) into RAID1 components.
483: installboot -v /dev/rwd0d /usr/mdec/bootxx_ffsv1
484: installboot -v /dev/rwd1d /usr/mdec/bootxx_ffsv1
485: # Install secondary boot loader
486: cp -p /usr/mdec/boot /
487: # Create boog.cfg following earlier guidance:
488: menu=Xen:load /netbsd-XEN3PAE_DOM0.gz console=pc;multiboot /xen.gz dom0_mem=256M
489: menu=Xen.ok:load /netbsd-XEN3PAE_DOM0.ok.gz console=pc;multiboot /xen.ok.gz dom0_mem=256M
490: menu=GENERIC:boot
491: menu=GENERIC single-user:boot -s
492: menu=GENERIC.ok:boot netbsd.ok
493: menu=GENERIC.ok single-user:boot netbsd.ok -s
494: menu=Drop to boot prompt:prompt
495: default=1
496: timeout=30
497:
498: TODO: actually do this and fix it if necessary.
1.22 gdt 499:
1.15 gdt 500: Updating Xen versions
501: ---------------------
502:
1.21 gdt 503: Updating Xen is conceptually not difficult, but can run into all the
504: issues found when installing Xen. Assuming migration from 4.1 to 4.2,
505: remove the xenkernel41 and xentools41 packages and install the
506: xenkernel42 and xentools42 packages. Copy the 4.2 xen.gz to /.
507:
508: Ensure that the contents of /etc/rc.d/xen* are correct. Enable the
509: correct set of daemons. Ensure that the domU config files are valid
510: for the new version.
1.15 gdt 511:
1.28 gdt 512:
1.82 gdt 513: Running Xen under qemu
514: ----------------------
515:
516: The astute reader will note that this section is somewhat twisted.
517: However, it can be useful to run Xen under qemu either because the
518: version of NetBSD as a dom0 does not run on the hardware in use, or to
519: generate automated test cases involving Xen.
520:
1.84 gdt 521: In 2015-01, the following combination was reported to mostly work:
1.82 gdt 522:
523: host OS: NetBSD/amd64 6.1.4
524: qemu: 2.2.0 from pkgsrc
525: Xen kernel: xenkernel42-4.2.5nb1 from pkgsrc
526: dom0 kernel: NetBSD/amd64 6.1.5
527: Xen tools: xentools42-4.2.5 from pkgsrc
528:
1.84 gdt 529: See http://gnats.netbsd.org/47720 for a problem with dom0 shutdown.
530:
1.28 gdt 531: Unprivileged domains (domU)
532: ===========================
533:
534: This section describes general concepts about domUs. It does not
1.33 gdt 535: address specific domU operating systems or how to install them. The
536: config files for domUs are typically in /usr/pkg/etc/xen, and are
1.60 wiki 537: typically named so that the file name, domU name and the domU's host
1.33 gdt 538: name match.
539:
540: The domU is provided with cpu and memory by Xen, configured by the
541: dom0. The domU is provided with disk and network by the dom0,
542: mediated by Xen, and configured in the dom0.
543:
544: Entropy in domUs can be an issue; physical disks and network are on
545: the dom0. NetBSD's /dev/random system works, but is often challenged.
546:
1.48 gdt 547: Config files
548: ------------
549:
550: There is no good order to present config files and the concepts
551: surrounding what is being configured. We first show an example config
552: file, and then in the various sections give details.
553:
554: See (at least in xentools41) /usr/pkg/share/examples/xen/xmexample*,
555: for a large number of well-commented examples, mostly for running
556: GNU/Linux.
557:
558: The following is an example minimal domain configuration file
559: "/usr/pkg/etc/xen/foo". It is (with only a name change) an actual
560: known working config file on Xen 4.1 (NetBSD 5 amd64 dom0 and NetBSD 5
561: i386 domU). The domU serves as a network file server.
562:
563: # -*- mode: python; -*-
564:
565: kernel = "/netbsd-XEN3PAE_DOMU-i386-foo.gz"
566: memory = 1024
567: vif = [ 'mac=aa:00:00:d1:00:09,bridge=bridge0' ]
568: disk = [ 'file:/n0/xen/foo-wd0,0x0,w',
569: 'file:/n0/xen/foo-wd1,0x1,w' ]
570:
571: The domain will have the same name as the file. The kernel has the
572: host/domU name in it, so that on the dom0 one can update the various
573: domUs independently. The vif line causes an interface to be provided,
574: with a specific mac address (do not reuse MAC addresses!), in bridge
575: mode. Two disks are provided, and they are both writable; the bits
576: are stored in files and Xen attaches them to a vnd(4) device in the
577: dom0 on domain creation. The system treates xbd0 as the boot device
578: without needing explicit configuration.
579:
580: By default xm looks for domain config files in /usr/pkg/etc/xen. Note
581: that "xm create" takes the name of a config file, while other commands
582: take the name of a domain. To create the domain, connect to the
583: console, create the domain while attaching the console, shutdown the
584: domain, and see if it has finished stopping, do (or xl with Xen >=
585: 4.2):
586:
587: xm create foo
588: xm console foo
589: xm create -c foo
590: xm shutdown foo
1.90 ! gdt 591: xm list
1.48 gdt 592:
593: Typing ^] will exit the console session. Shutting down a domain is
594: equivalent to pushing the power button; a NetBSD domU will receive a
595: power-press event and do a clean shutdown. Shutting down the dom0
596: will trigger controlled shutdowns of all configured domUs.
597:
598: domU kernels
599: ------------
600:
601: On a physical computer, the BIOS reads sector 0, and a chain of boot
602: loaders finds and loads a kernel. Normally this comes from the root
603: filesystem. With Xen domUs, the process is totally different. The
604: normal path is for the domU kernel to be a file in the dom0's
605: filesystem. At the request of the dom0, Xen loads that kernel into a
606: new domU instance and starts execution. While domU kernels can be
607: anyplace, reasonable places to store domU kernels on the dom0 are in /
608: (so they are near the dom0 kernel), in /usr/pkg/etc/xen (near the
609: config files), or in /u0/xen (where the vdisks are).
610:
1.59 gdt 611: Note that loading the domU kernel from the dom0 implies that boot
612: blocks, /boot, /boot.cfg, and so on are all ignored in the domU.
1.48 gdt 613: See the VPS section near the end for discussion of alternate ways to
614: obtain domU kernels.
615:
1.33 gdt 616: CPU and memory
617: --------------
618:
1.48 gdt 619: A domain is provided with some number of vcpus, less than the number
620: of cpus seen by the hypervisor. (For a dom0, this is controlled by
621: the boot argument "dom0_max_vcpus=1".) For a domU, it is controlled
622: from the config file by the "vcpus = N" directive.
623:
624: A domain is provided with memory; this is controlled in the config
625: file by "memory = N" (in megabytes). In the straightforward case, the
626: sum of the the memory allocated to the dom0 and all domUs must be less
1.33 gdt 627: than the available memory.
628:
629: Xen also provides a "balloon" driver, which can be used to let domains
630: use more memory temporarily. TODO: Explain better, and explain how
631: well it works with NetBSD.
1.28 gdt 632:
633: Virtual disks
634: -------------
635:
1.33 gdt 636: With the file/vnd style, typically one creates a directory,
637: e.g. /u0/xen, on a disk large enough to hold virtual disks for all
638: domUs. Then, for each domU disk, one writes zeros to a file that then
639: serves to hold the virtual disk's bits; a suggested name is foo-xbd0
640: for the first virtual disk for the domU called foo. Writing zeros to
641: the file serves two purposes. One is that preallocating the contents
642: improves performance. The other is that vnd on sparse files has
643: failed to work. TODO: give working/notworking NetBSD versions for
644: sparse vnd. Note that the use of file/vnd for Xen is not really
645: different than creating a file-backed virtual disk for some other
1.39 gdt 646: purpose, except that xentools handles the vnconfig commands. To
647: create an empty 4G virtual disk, simply do
648:
649: dd if=/dev/zero of=foo-xbd0 bs=1m count=4096
1.33 gdt 650:
1.89 gdt 651: Do not use qemu-img-xen, because this will create sparse file. There
652: have been recent (2015) reports of sparse vnd(4) devices causing
653: lockups, but there is apparently no PR.
654:
1.33 gdt 655: With the lvm style, one creates logical devices. They are then used
1.48 gdt 656: similarly to vnds. TODO: Add an example with lvm.
657:
658: In domU config files, the disks are defined as a sequence of 3-tuples.
659: The first element is "method:/path/to/disk". Common methods are
660: "file:" for file-backed vnd. and "phy:" for something that is already
661: a (TODO: character or block) device.
662:
663: The second element is an artifact of how virtual disks are passed to
664: Linux, and a source of confusion with NetBSD Xen usage. Linux domUs
665: are given a device name to associate with the disk, and values like
666: "hda1" or "sda1" are common. In a NetBSD domU, the first disk appears
667: as xbd0, the second as xbd1, and so on. However, xm/xl demand a
668: second argument. The name given is converted to a major/minor by
1.49 gdt 669: calling stat(2) on the name in /dev and this is passed to the domU.
670: In the general case, the dom0 and domU can be different operating
1.48 gdt 671: systems, and it is an unwarranted assumption that they have consistent
672: numbering in /dev, or even that the dom0 OS has a /dev. With NetBSD
673: as both dom0 and domU, using values of 0x0 for the first disk and 0x1
1.49 gdt 674: for the second works fine and avoids this issue. For a GNU/Linux
675: guest, one can create /dev/hda1 in /dev, or to pass 0x301 for
676: /dev/hda1.
1.48 gdt 677:
678: The third element is "w" for writable disks, and "r" for read-only
679: disks.
1.28 gdt 680:
681: Virtual Networking
682: ------------------
683:
1.46 gdt 684: Xen provides virtual ethernets, each of which connects the dom0 and a
685: domU. For each virtual network, there is an interface "xvifN.M" in
686: the dom0, and in domU index N, a matching interface xennetM (NetBSD
687: name). The interfaces behave as if there is an Ethernet with two
688: adaptors connected. From this primitive, one can construct various
689: configurations. We focus on two common and useful cases for which
690: there are existing scripts: bridging and NAT.
1.28 gdt 691:
1.48 gdt 692: With bridging (in the example above), the domU perceives itself to be
693: on the same network as the dom0. For server virtualization, this is
694: usually best. Bridging is accomplished by creating a bridge(4) device
695: and adding the dom0's physical interface and the various xvifN.0
696: interfaces to the bridge. One specifies "bridge=bridge0" in the domU
697: config file. The bridge must be set up already in the dom0; an
698: example /etc/ifconfig.bridge0 is:
1.46 gdt 699:
700: create
701: up
702: !brconfig bridge0 add wm0
1.28 gdt 703:
704: With NAT, the domU perceives itself to be behind a NAT running on the
705: dom0. This is often appropriate when running Xen on a workstation.
1.48 gdt 706: TODO: NAT appears to be configured by "vif = [ '' ]".
1.28 gdt 707:
1.49 gdt 708: The MAC address specified is the one used for the interface in the new
1.53 gdt 709: domain. The interface in dom0 will use this address XOR'd with
1.49 gdt 710: 00:00:00:01:00:00. Random MAC addresses are assigned if not given.
711:
1.33 gdt 712: Sizing domains
713: --------------
714:
715: Modern x86 hardware has vast amounts of resources. However, many
716: virtual servers can function just fine on far less. A system with
717: 256M of RAM and a 4G disk can be a reasonable choice. Note that it is
718: far easier to adjust virtual resources than physical ones. For
719: memory, it's just a config file edit and a reboot. For disk, one can
720: create a new file and vnconfig it (or lvm), and then dump/restore,
721: just like updating physical disks, but without having to be there and
722: without those pesky connectors.
723:
1.48 gdt 724: Starting domains automatically
725: ------------------------------
1.28 gdt 726:
1.48 gdt 727: To start domains foo at bar at boot and shut them down cleanly on dom0
728: shutdown, in rc.conf add:
1.28 gdt 729:
1.48 gdt 730: xendomains="foo bar"
1.28 gdt 731:
1.86 gdt 732: Note that earlier versions of the xentools41 xendomains rc.d scripth
733: usd xl, when one should use xm with 4.1.
1.28 gdt 734:
735: Creating specific unprivileged domains (domU)
736: =============================================
1.14 gdt 737:
738: Creating domUs is almost entirely independent of operating system. We
1.49 gdt 739: have already presented the basics of config files. Note that you must
740: have already completed the dom0 setup so that "xl list" (or "xm list")
741: works.
1.14 gdt 742:
743: Creating an unprivileged NetBSD domain (domU)
744: ---------------------------------------------
1.1 mspo 745:
1.49 gdt 746: See the earlier config file, and adjust memory. Decide on how much
747: storage you will provide, and prepare it (file or lvm).
748:
749: While the kernel will be obtained from the dom0 filesystem, the same
750: file should be present in the domU as /netbsd so that tools like
751: savecore(8) can work. (This is helpful but not necessary.)
752:
753: The kernel must be specifically for Xen and for use as a domU. The
754: i386 and amd64 provide the following kernels:
755:
756: i386 XEN3_DOMU
757: i386 XEN3PAE_DOMU
758: amd64 XEN3_DOMU
1.5 mspo 759:
1.49 gdt 760: Unless using Xen 3.1 (and you shouldn't) with i386-mode Xen, you must
761: use the PAE version of the i386 kernel.
762:
763: This will boot NetBSD, but this is not that useful if the disk is
764: empty. One approach is to unpack sets onto the disk outside of xen
765: (by mounting it, just as you would prepare a physical disk for a
766: system you can't run the installer on).
767:
768: A second approach is to run an INSTALL kernel, which has a miniroot
769: and can load sets from the network. To do this, copy the INSTALL
770: kernel to / and change the kernel line in the config file to:
1.5 mspo 771:
1.49 gdt 772: kernel = "/home/bouyer/netbsd-INSTALL_XEN3_DOMU"
1.5 mspo 773:
1.49 gdt 774: Then, start the domain as "xl create -c configname".
1.1 mspo 775:
1.49 gdt 776: Alternatively, if you want to install NetBSD/Xen with a CDROM image, the following
777: line should be used in the config file.
1.1 mspo 778:
1.3 mspo 779: disk = [ 'phy:/dev/wd0e,0x1,w', 'phy:/dev/cd0a,0x2,r' ]
1.1 mspo 780:
781: After booting the domain, the option to install via CDROM may be
1.49 gdt 782: selected. The CDROM device should be changed to `xbd1d`.
1.1 mspo 783:
1.49 gdt 784: Once done installing, "halt -p" the new domain (don't reboot or halt,
785: it would reload the INSTALL_XEN3_DOMU kernel even if you changed the
786: config file), switch the config file back to the XEN3_DOMU kernel,
787: and start the new domain again. Now it should be able to use "root on
788: xbd0a" and you should have a, functional NetBSD domU.
1.1 mspo 789:
1.49 gdt 790: TODO: check if this is still accurate.
1.1 mspo 791: When the new domain is booting you'll see some warnings about *wscons*
792: and the pseudo-terminals. These can be fixed by editing the files
1.5 mspo 793: `/etc/ttys` and `/etc/wscons.conf`. You must disable all terminals in
794: `/etc/ttys`, except *console*, like this:
1.1 mspo 795:
1.3 mspo 796: console "/usr/libexec/getty Pc" vt100 on secure
797: ttyE0 "/usr/libexec/getty Pc" vt220 off secure
798: ttyE1 "/usr/libexec/getty Pc" vt220 off secure
799: ttyE2 "/usr/libexec/getty Pc" vt220 off secure
800: ttyE3 "/usr/libexec/getty Pc" vt220 off secure
1.1 mspo 801:
1.5 mspo 802: Finally, all screens must be commented out from `/etc/wscons.conf`.
1.1 mspo 803:
804: It is also desirable to add
805:
1.49 gdt 806: powerd=YES
1.1 mspo 807:
1.5 mspo 808: in rc.conf. This way, the domain will be properly shut down if
1.53 gdt 809: `xm shutdown -R` or `xm shutdown -H` is used on the dom0.
1.1 mspo 810:
811: Your domain should be now ready to work, enjoy.
812:
1.14 gdt 813: Creating an unprivileged Linux domain (domU)
1.5 mspo 814: --------------------------------------------
1.1 mspo 815:
816: Creating unprivileged Linux domains isn't much different from
817: unprivileged NetBSD domains, but there are some details to know.
818:
819: First, the second parameter passed to the disk declaration (the '0x1' in
820: the example below)
821:
1.3 mspo 822: disk = [ 'phy:/dev/wd0e,0x1,w' ]
1.1 mspo 823:
824: does matter to Linux. It wants a Linux device number here (e.g. 0x300
1.49 gdt 825: for hda). Linux builds device numbers as: (major \<\< 8 + minor).
826: So, hda1 which has major 3 and minor 1 on a Linux system will have
827: device number 0x301. Alternatively, devices names can be used (hda,
828: hdb, ...) as xentools has a table to map these names to devices
829: numbers. To export a partition to a Linux guest we can use:
1.1 mspo 830:
1.49 gdt 831: disk = [ 'phy:/dev/wd0e,0x300,w' ]
832: root = "/dev/hda1 ro"
1.1 mspo 833:
834: and it will appear as /dev/hda on the Linux system, and be used as root
835: partition.
836:
1.49 gdt 837: To install the Linux system on the partition to be exported to the
838: guest domain, the following method can be used: install
839: sysutils/e2fsprogs from pkgsrc. Use mke2fs to format the partition
840: that will be the root partition of your Linux domain, and mount it.
841: Then copy the files from a working Linux system, make adjustments in
842: `/etc` (fstab, network config). It should also be possible to extract
843: binary packages such as .rpm or .deb directly to the mounted partition
844: using the appropriate tool, possibly running under NetBSD's Linux
845: emulation. Once the filesystem has been populated, umount it. If
846: desirable, the filesystem can be converted to ext3 using tune2fs -j.
847: It should now be possible to boot the Linux guest domain, using one of
848: the vmlinuz-\*-xenU kernels available in the Xen binary distribution.
1.1 mspo 849:
850: To get the linux console right, you need to add:
851:
1.3 mspo 852: extra = "xencons=tty1"
1.1 mspo 853:
854: to your configuration since not all linux distributions auto-attach a
855: tty to the xen console.
856:
1.14 gdt 857: Creating an unprivileged Solaris domain (domU)
1.5 mspo 858: ----------------------------------------------
1.1 mspo 859:
1.50 gdt 860: See possibly outdated
861: [Solaris domU instructions](/ports/xen/howto-solaris/).
1.5 mspo 862:
1.1 mspo 863:
1.52 gdt 864: PCI passthrough: Using PCI devices in guest domains
865: ---------------------------------------------------
1.1 mspo 866:
1.53 gdt 867: The dom0 can give other domains access to selected PCI
1.52 gdt 868: devices. This can allow, for example, a non-privileged domain to have
869: access to a physical network interface or disk controller. However,
870: keep in mind that giving a domain access to a PCI device most likely
871: will give the domain read/write access to the whole physical memory,
872: as PCs don't have an IOMMU to restrict memory access to DMA-capable
1.53 gdt 873: device. Also, it's not possible to export ISA devices to non-dom0
1.52 gdt 874: domains, which means that the primary VGA adapter can't be exported.
875: A guest domain trying to access the VGA registers will panic.
876:
1.53 gdt 877: If the dom0 is NetBSD, it has to be running Xen 3.1, as support has
1.52 gdt 878: not been ported to later versions at this time.
879:
880: For a PCI device to be exported to a domU, is has to be attached to
881: the "pciback" driver in dom0. Devices passed to the dom0 via the
882: pciback.hide boot parameter will attach to "pciback" instead of the
883: usual driver. The list of devices is specified as "(bus:dev.func)",
1.5 mspo 884: where bus and dev are 2-digit hexadecimal numbers, and func a
885: single-digit number:
1.1 mspo 886:
1.52 gdt 887: pciback.hide=(00:0a.0)(00:06.0)
1.1 mspo 888:
1.52 gdt 889: pciback devices should show up in the dom0's boot messages, and the
1.5 mspo 890: devices should be listed in the `/kern/xen/pci` directory.
1.1 mspo 891:
1.52 gdt 892: PCI devices to be exported to a domU are listed in the "pci" array of
893: the domU's config file, with the format "0000:bus:dev.func".
1.1 mspo 894:
1.52 gdt 895: pci = [ '0000:00:06.0', '0000:00:0a.0' ]
1.1 mspo 896:
1.52 gdt 897: In the domU an "xpci" device will show up, to which one or more pci
898: busses will attach. Then the PCI drivers will attach to PCI busses as
899: usual. Note that the default NetBSD DOMU kernels do not have "xpci"
900: or any PCI drivers built in by default; you have to build your own
901: kernel to use PCI devices in a domU. Here's a kernel config example;
902: note that only the "xpci" lines are unusual.
903:
904: include "arch/i386/conf/XEN3_DOMU"
905:
906: # Add support for PCI busses to the XEN3_DOMU kernel
907: xpci* at xenbus ?
908: pci* at xpci ?
909:
910: # PCI USB controllers
911: uhci* at pci? dev ? function ? # Universal Host Controller (Intel)
912:
913: # USB bus support
914: usb* at uhci?
915:
916: # USB Hubs
917: uhub* at usb?
918: uhub* at uhub? port ? configuration ? interface ?
919:
920: # USB Mass Storage
921: umass* at uhub? port ? configuration ? interface ?
922: wd* at umass?
923: # SCSI controllers
924: ahc* at pci? dev ? function ? # Adaptec [23]94x, aic78x0 SCSI
925:
926: # SCSI bus support (for both ahc and umass)
927: scsibus* at scsi?
928:
929: # SCSI devices
930: sd* at scsibus? target ? lun ? # SCSI disk drives
931: cd* at scsibus? target ? lun ? # SCSI CD-ROM drives
1.1 mspo 932:
933:
1.28 gdt 934: NetBSD as a domU in a VPS
935: =========================
936:
937: The bulk of the HOWTO is about using NetBSD as a dom0 on your own
938: hardware. This section explains how to deal with Xen in a domU as a
939: virtual private server where you do not control or have access to the
1.70 gdt 940: dom0. This is not intended to be an exhaustive list of VPS providers;
941: only a few are mentioned that specifically support NetBSD.
1.28 gdt 942:
1.52 gdt 943: VPS operators provide varying degrees of access and mechanisms for
944: configuration. The big issue is usually how one controls which kernel
945: is booted, because the kernel is nominally in the dom0 filesystem (to
1.70 gdt 946: which VPS users do not normally have acesss). A second issue is how
947: to install NetBSD.
1.52 gdt 948: A VPS user may want to compile a kernel for security updates, to run
949: npf, run IPsec, or any other reason why someone would want to change
950: their kernel.
951:
952: One approach is to have an adminstrative interface to upload a kernel,
1.68 gdt 953: or to select from a prepopulated list. Other approaches are pygrub
1.59 gdt 954: (deprecated) and pvgrub, which are ways to have a bootloader obtain a
955: kernel from the domU filesystem. This is closer to a regular physical
956: computer, where someone who controls a machine can replace the kernel.
1.52 gdt 957:
1.74 gdt 958: A second issue is multiple CPUs. With NetBSD 6, domUs support
959: multiple vcpus, and it is typical for VPS providers to enable multiple
960: CPUs for NetBSD domUs.
961:
1.68 gdt 962: pygrub
1.59 gdt 963: -------
1.52 gdt 964:
1.68 gdt 965: pygrub runs in the dom0 and looks into the domU filesystem. This
1.59 gdt 966: implies that the domU must have a kernel in a filesystem in a format
1.68 gdt 967: known to pygrub. As of 2014, pygrub seems to be of mostly historical
968: interest.
1.52 gdt 969:
1.59 gdt 970: pvgrub
971: ------
972:
973: pvgrub is a version of grub that uses PV operations instead of BIOS
974: calls. It is booted from the dom0 as the domU kernel, and then reads
975: /grub/menu.lst and loads a kernel from the domU filesystem.
976:
1.70 gdt 977: [Panix](http://www.panix.com/) lets users use pvgrub. Panix reports
1.71 gdt 978: that pvgrub works with FFsv2 with 16K/2K and 32K/4K block/frag sizes
979: (and hence with defaults from "newfs -O 2"). See [Panix's pvgrub
1.70 gdt 980: page](http://www.panix.com/v-colo/grub.html), which describes only
1.74 gdt 981: Linux but should be updated to cover NetBSD :-).
1.70 gdt 982:
983: [prgmr.com](http://prgmr.com/) also lets users with pvgrub to boot
984: their own kernel. See then [prgmr.com NetBSD
1.74 gdt 985: HOWTO](http://wiki.prgmr.com/mediawiki/index.php/NetBSD_as_a_DomU)
986: (which is in need of updating).
1.59 gdt 987:
1.70 gdt 988: It appears that [grub's FFS
989: code](http://xenbits.xensource.com/hg/xen-unstable.hg/file/bca284f67702/tools/libfsimage/ufs/fsys_ufs.c)
990: does not support all aspects of modern FFS, but there are also reports
1.72 gdt 991: that FFSv2 works fine. At prgmr, typically one has an ext2 or FAT
1.70 gdt 992: partition for the kernel with the intent that grub can understand it,
993: which leads to /netbsd not being the actual kernel. One must remember
994: to update the special boot partiion.
1.59 gdt 995:
996: Amazon
997: ------
998:
999: TODO: add link to NetBSD amazon howto.
1.44 gdt 1000:
1001: Using npf
1002: ---------
1003:
1.81 gdt 1004: In standard kernels, npf is a module, and thus cannot be loaded in a
1.44 gdt 1005: DOMU kernel.
1006:
1.59 gdt 1007: TODO: explain how to compile npf into a custom kernel, answering (but
1008: note that the problem was caused by not booting the right kernel):
1.44 gdt 1009: http://mail-index.netbsd.org/netbsd-users/2014/12/26/msg015576.html
1.65 gdt 1010:
1011: TODO items for improving NetBSD/xen
1012: ===================================
1013:
1014: * Package Xen 4.4.
1.67 gdt 1015: * Get PCI passthrough working on Xen 4.2 (or 4.4).
1.65 gdt 1016: * Get pvgrub into pkgsrc, either via xentools or separately.
1017: * grub
1.70 gdt 1018: * Check/add support to pkgsrc grub2 for UFS2 and arbitrary
1.66 gdt 1019: fragsize/blocksize (UFS2 support may be present; the point is to
1020: make it so that with any UFS1/UFS2 filesystem setup that works
1021: with NetBSD grub will also work).
1.70 gdt 1022: See [pkg/40258](http://gnats.netbsd.org/40258).
1.65 gdt 1023: * Push patches upstream.
1024: * Get UFS2 patches into pvgrub.
1025: * Add support for PV ops to a version of /boot, and make it usable as
1026: a kernel in Xen, similar to pvgrub.
CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb