Annotation of wikisrc/ports/xen/howto.mdwn, revision 1.2
1.1 mspo 1: NetBSD/xen Howto
2: ================
3:
4: [](../../about/disclaimer.html#bsd-daemon)
6:
7: Table Of Contents
8: -----------------
9:
10: - [Introduction](#introduction)
11: - [Installing NetBSD as privileged domain (Dom0)](#netbsd-dom0)
12: - [Creating an unprivileged NetBSD domain (DomU)](#netbsd-domU)
13: - [Creating an unprivileged Linux domain (DomU)](#linux-domU)
14: - [Creating an unprivileged Solaris domain (DomU)](#solaris-domU)
15: - [Using PCI devices in guest domains](#pci-pass-through)
16: - [Links and further information](#links-and-more)
17:
18: * * * * *
19:
20: ### Introduction
21:
22: [![[Xen
23: screenshot]](../../gallery/in-Action/hubertf-xens.png)](../../gallery/in-Action/hubertf-xen.png)
24:
25: Xen is a virtual machine monitor for x86 hardware (requires i686-class
26: CPUs), which supports running multiple guest operating systems on a
27: single machine. Guest OSes (also called <E2><80><9C>domains<E2><80><9D>) require a modified
28: kernel which supports Xen hypercalls in replacement to access to the
29: physical hardware. At boot, the Xen kernel (also known as the Xen
30: hypervisor) is loaded (via the bootloader) along with the guest kernel
31: for the first domain (called *domain0*). The Xen kernel has to be loaded
32: using the multiboot protocol. You would use the NetBSD boot loader for
33: this, or alternatively the **grub** boot loader (**grub** has some
34: limitations, detailed below). *domain0* has special privileges to access
35: the physical hardware (PCI and ISA devices), administrate other domains
36: and provide virtual devices (disks and network) to other domains that
37: lack those privileges. For more details, see
38: [http://www.xen.org/](http://www.xen.org/).
39:
40: NetBSD can be used for both *domain0 (Dom0)* and further, unprivileged
41: (DomU) domains. (Actually there can be multiple privileged domains
42: accessing different parts of the hardware, all providing virtual devices
43: to unprivileged domains. We will only talk about the case of a single
44: privileged domain, *domain0*). *domain0* will see physical devices much
45: like a regular i386 or amd64 kernel, and will own the physical console
46: (VGA or serial). Unprivileged domains will only see a character-only
47: virtual console, virtual disks (`xbd`{.code}) and virtual network
48: interfaces (`xennet`{.code}) provided by a privileged domain (usually
49: *domain0*). xbd devices are connected to a block device (i.e., a
50: partition of a disk, raid, ccd, ... device) in the privileged domain.
51: xennet devices are connected to virtual devices in the privileged
52: domain, named xvif\<domain number\>.\<if number for this domain\>, e.g.,
53: xvif1.0. Both xennet and xvif devices are seen as regular Ethernet
54: devices (they can be seen as a crossover cable between 2 PCs) and can be
55: assigned addresses (and be routed or NATed, filtered using IPF, etc ...)
56: or be added as part of a bridge.
57:
58: * * * * *
59: ### Installing NetBSD as privileged domain (Dom0)
60:
61: First do a NetBSD/i386 or NetBSD/amd64
62: [installation](../../docs/guide/en/chap-inst.html) of the 5.1 release
63: (or newer) as you usually do on x86 hardware. The binary releases are
64: available from
65: [ftp://ftp.NetBSD.org/pub/NetBSD/](ftp://ftp.NetBSD.org/pub/NetBSD/).
66: Binary snapshots for current and the stable branches are available on
67: [daily autobuilds](http://nyftp.NetBSD.org/pub/NetBSD-daily/). If you
68: plan to use the **grub** boot loader, when partitioning the disk you
69: have to make the root partition smaller than 512Mb, and formatted as
70: FFSv1 with 8k block/1k fragments. If the partition is larger than this,
71: uses FFSv2 or has different block/fragment sizes, grub may fail to load
72: some files. Also keep in mind that you'll probably want to provide
73: virtual disks to other domains, so reserve some partitions for these
74: virtual disks. Alternatively, you can create large files in the file
75: system, map them to vnd(4) devices and export theses vnd devices to
76: other domains.
77:
78: Next step is to install the Xen packages via pkgsrc or from binary
79: packages. See [the pkgsrc
80: documentation](http://www.NetBSD.org/docs/pkgsrc/) if you are unfamiliar
81: with pkgsrc and/or handling of binary packages. Xen 3.1, 3.3, 4.1 and
82: 4.2 are available. 3.1 supports PCI pass-through while other versions do
83: not. You'll need either
84: [`sysutils/xentools3`{.filename}](http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/sysutils/xentools3/README.html)
85: and
86: [`sysutils/xenkernel3`{.filename}](http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/sysutils/xenkernel3/README.html)
87: for Xen 3.1,
88: [`sysutils/xentools33`{.filename}](http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/sysutils/xentools33/README.html)
89: and
90: [`sysutils/xenkernel33`{.filename}](http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/sysutils/xenkernel33/README.html)
91: for Xen 3.3,
92: [`sysutils/xentools41`{.filename}](http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/sysutils/xentools41/README.html)
93: and
94: [`sysutils/xenkernel41`{.filename}](http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/sysutils/xenkernel41/README.html)
95: for Xen 4.1. or
96: [`sysutils/xentools42`{.filename}](http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/sysutils/xentools42/README.html)
97: and
98: [`sysutils/xenkernel42`{.filename}](http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/sysutils/xenkernel42/README.html)
99: for Xen 4.2. You'll also need
100: [`sysutils/grub`{.filename}](http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/sysutils/grub/README.html)
101: if you plan do use the grub boot loader. If using Xen 3.1, you may also
102: want to install
103: [`sysutils/xentools3-hvm`{.filename}](http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/sysutils/xentools3-hvm/README.html)
104: which contains the utilities to run unmodified guests OSes using the
105: *HVM* support (for later versions this is included in
106: [`sysutils/xentools`{.filename}](http://ftp.NetBSD.org/pub/pkgsrc/current/pkgsrc/sysutils/xentools/README.html)).
107: Note that your CPU needs to support this. Intel CPUs must have the 'VT'
108: instruction, AMD CPUs the 'SVM' instruction. You can easily find out if
109: your CPU support HVM by using NetBSD's cpuctl command:
110:
1.2 ! mspo 111: ```
1.1 mspo 112: # cpuctl identify 0
113: cpu0: Intel Core 2 (Merom) (686-class), id 0x6f6
114: cpu0: features 0xbfebfbff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,APIC,SEP,MTRR>
115: cpu0: features 0xbfebfbff<PGE,MCA,CMOV,PAT,PSE36,CFLUSH,DS,ACPI,MMX>
116: cpu0: features 0xbfebfbff<FXSR,SSE,SSE2,SS,HTT,TM,SBF>
117: cpu0: features2 0x4e33d<SSE3,DTES64,MONITOR,DS-CPL,VMX,TM2,SSSE3,CX16,xTPR,PDCM,DCA>
118: cpu0: features3 0x20100800<SYSCALL/SYSRET,XD,EM64T>
119: cpu0: "Intel(R) Xeon(R) CPU 5130 @ 2.00GHz"
120: cpu0: I-cache 32KB 64B/line 8-way, D-cache 32KB 64B/line 8-way
121: cpu0: L2 cache 4MB 64B/line 16-way
122: cpu0: ITLB 128 4KB entries 4-way
123: cpu0: DTLB 256 4KB entries 4-way, 32 4MB entries 4-way
124: cpu0: Initial APIC ID 0
125: cpu0: Cluster/Package ID 0
126: cpu0: Core ID 0
127: cpu0: family 06 model 0f extfamily 00 extmodel 00
1.2 ! mspo 128: ```
1.1 mspo 129:
130: Depending on your CPU, the feature you are looking for is called HVM,
131: SVM or VMX.
132:
133: Next you need to copy the selected Xen kernel itself. pkgsrc installed
134: them under `/usr/pkg/xen*-kernel/`{.filename}. The file you're looking
135: for is `xen.gz`{.filename}. Copy it to your root file system.
136: `xen-debug.gz`{.filename} is a kernel with more consistency checks and
137: more details printed on the serial console. It is useful for debugging
138: crashing guests if you use a serial console. It is not useful with a VGA
139: console.
140:
141: You'll then need a NetBSD/Xen kernel for *domain0* on your root file
142: system. The XEN3PAE\_DOM0 kernel or XEN3\_DOM0 provided as part of the
143: i386 or amd64 binaries is suitable for this, but you may want to
144: customize it. Keep your native kernel around, as it can be useful for
145: recovery. *Note:* the *domain0* kernel must support KERNFS and
146: `/kern`{.filename} must be mounted because *xend* needs access to
147: `/kern/xen/privcmd`{.filename}.
148:
149: Next you need to get a bootloader to load the `xen.gz`{.filename}
150: kernel, and the NetBSD *domain0* kernel as a module. This can be
151: **grub** or NetBSD's boot loader. Below is a detailled example for grub,
152: see the boot.cfg(5) manual page for an example using the latter.
153:
154: This is also where you'll specify the memory allocated to *domain0*, the
155: console to use, etc ...
156:
157: Here is a commented `/grub/menu.lst`{.filename} file:
158:
159: ~~~ {.programlisting}
160: #Grub config file for NetBSD/xen. Copy as /grub/menu.lst and run
161: # grub-install /dev/rwd0d (assuming your boot device is wd0).
162: #
163: # The default entry to load will be the first one
164: default=0
165:
166: # boot the default entry after 10s if the user didn't hit keyboard
167: timeout=10
168:
169: # Configure serial port to use as console. Ignore if you'll use VGA only
170: serial --unit=0 --speed=115200 --word=8 --parity=no --stop=1
171:
172: # Let the user select which console to use (serial or VGA), default
173: # to serial after 10s
174: terminal --timeout=10 serial console
175:
176: # An entry for NetBSD/xen, using /netbsd as the domain0 kernel, and serial
177: # console. Domain0 will have 64MB RAM allocated.
178: # Assume NetBSD is installed in the first MBR partition.
179: title Xen 3 / NetBSD (hda0, serial)
180: root(hd0,0)
181: kernel (hd0,a)/xen.gz dom0_mem=65536 com1=115200,8n1
182: module (hd0,a)/netbsd bootdev=wd0a ro console=ttyS0
183:
184: # Same as above, but using VGA console
185: # We can use console=tty0 (Linux syntax) or console=pc (NetBSD syntax)
186: title Xen 3 / NetBSD (hda0, vga)
187: root(hd0,0)
188: kernel (hd0,a)/xen.gz dom0_mem=65536
189: module (hd0,a)/netbsd bootdev=wd0a ro console=tty0
190:
191: # NetBSD/xen using a backup domain0 kernel (in case you installed a
192: # nonworking kernel as /netbsd
193: title Xen 3 / NetBSD (hda0, backup, serial)
194: root(hd0,0)
195: kernel (hd0,a)/xen.gz dom0_mem=65536 com1=115200,8n1
196: module (hd0,a)/netbsd.backup bootdev=wd0a ro console=ttyS0
197: title Xen 3 / NetBSD (hda0, backup, VGA)
198: root(hd0,0)
199: kernel (hd0,a)/xen.gz dom0_mem=65536
200: module (hd0,a)/netbsd.backup bootdev=wd0a ro console=tty0
201:
202: #Load a regular NetBSD/i386 kernel. Can be useful if you end up with a
203: #nonworking /xen.gz
204: title NetBSD 5.1
205: root (hd0,a)
206: kernel --type=netbsd /netbsd-GENERIC
207:
208: #Load the NetBSD bootloader, letting it load the NetBSD/i386 kernel.
209: #May be better than the above, as grub can't pass all required infos
210: #to the NetBSD/i386 kernel (e.g. console, root device, ...)
211: title NetBSD chain
212: root (hd0,0)
213: chainloader +1
214:
215: ## end of grub config file.
216:
217: ~~~
218:
219: Install grub with the following command:
220:
221: ~~~ {.programlisting}
222: # grub --no-floppy
223:
224: grub> root (hd0,a)
225: Filesystem type is ffs, partition type 0xa9
226:
227: grub> setup (hd0)
228: Checking if "/boot/grub/stage1" exists... no
229: Checking if "/grub/stage1" exists... yes
230: Checking if "/grub/stage2" exists... yes
231: Checking if "/grub/ffs_stage1_5" exists... yes
232: Running "embed /grub/ffs_stage1_5 (hd0)"... 14 sectors are embedded.
233: succeeded
234: Running "install /grub/stage1 (hd0) (hd0)1+14 p (hd0,0,a)/grub/stage2 /grub/menu.lst"...
235: succeeded
236: Done.
237:
238: ~~~
239:
240: * * * * *
241:
242: ### Creating an unprivileged NetBSD domain (DomU)
243:
244: Once you have *domain0* running, you need to start the xen tool daemon
245: (**/usr/pkg/share/examples/rc.d/xend start**) and the xen backend daemon
246: (**/usr/pkg/share/examples/rc.d/xenbackendd start** for Xen3\*,
247: **/usr/pkg/share/examples/rc.d/xencommons start** for Xen4.\*). Make
248: sure that `/dev/xencons`{.filename} and `/dev/xenevt`{.filename} exist
249: before starting **xend**. You can create them with this command:
250:
251: ~~~ {.programlisting}
252: # cd /dev && sh MAKEDEV xen
253: ~~~
254:
255: xend will write logs to `/var/log/xend.log`{.filename} and
256: `/var/log/xend-debug.log`{.filename}. You can then control xen with the
257: xm tool. 'xm list' will show something like:
258:
259: ~~~ {.programlisting}
260: # xm list
261: Name Id Mem(MB) CPU State Time(s) Console
262: Domain-0 0 64 0 r---- 58.1
263: ~~~
264:
265: 'xm create' allows you to create a new domain. It uses a config file in
266: PKG\_SYSCONFDIR for its parameters. By default, this file will be in
267: `/usr/pkg/etc/xen/`{.filename}. On creation, a kernel has to be
268: specified, which will be executed in the new domain (this kernel is in
269: the *domain0* file system, not on the new domain virtual disk; but
270: please note, you should install the same kernel into *domainU* as
271: `/netbsd`{.filename} in order to make your system tools, like
272: [savecore(8)](http://netbsd.gw.com/cgi-bin/man-cgi?savecore+8+NetBSD-6.0+i386),
273: work). A suitable kernel is provided as part of the i386 and amd64
274: binary sets: XEN3\_DOMU.
275:
276: Here is an /usr/pkg/etc/xen/nbsd example config file:
277:
278: ~~~ {.programlisting}
279: # -*- mode: python; -*-
280: #============================================================================
281: # Python defaults setup for 'xm create'.
282: # Edit this file to reflect the configuration of your system.
283: #============================================================================
284:
285: #----------------------------------------------------------------------------
286: # Kernel image file. This kernel will be loaded in the new domain.
287: kernel = "/home/bouyer/netbsd-XEN3_DOMU"
288: #kernel = "/home/bouyer/netbsd-INSTALL_XEN3_DOMU"
289:
290: # Memory allocation (in megabytes) for the new domain.
291: memory = 128
292:
293: # A handy name for your new domain. This will appear in 'xm list',
294: # and you can use this as parameters for xm in place of the domain
295: # number. All domains must have different names.
296: #
297: name = "nbsd"
298:
299: # The number of virtual CPUs this domain has.
300: #
301: vcpus = 1
302:
303: #----------------------------------------------------------------------------
304: # Define network interfaces for the new domain.
305:
306: # Number of network interfaces (must be at least 1). Default is 1.
307: nics = 1
308:
309: # Define MAC and/or bridge for the network interfaces.
310: #
311: # The MAC address specified in ``mac'' is the one used for the interface
312: # in the new domain. The interface in domain0 will use this address XOR'd
313: # with 00:00:00:01:00:00 (i.e. aa:00:00:51:02:f0 in our example). Random
314: # MACs are assigned if not given.
315: #
316: # ``bridge'' is a required parameter, which will be passed to the
317: # vif-script called by xend(8) when a new domain is created to configure
318: # the new xvif interface in domain0.
319: #
320: # In this example, the xvif is added to bridge0, which should have been
321: # set up prior to the new domain being created -- either in the
322: # ``network'' script or using a /etc/ifconfig.bridge0 file.
323: #
324: vif = [ 'mac=aa:00:00:50:02:f0, bridge=bridge0' ]
325:
326: #----------------------------------------------------------------------------
327: # Define the disk devices you want the domain to have access to, and
328: # what you want them accessible as.
329: #
330: # Each disk entry is of the form:
331: #
332: # phy:DEV,VDEV,MODE
333: #
334: # where DEV is the device, VDEV is the device name the domain will see,
335: # and MODE is r for read-only, w for read-write. You can also create
336: # file-backed domains using disk entries of the form:
337: #
338: # file:PATH,VDEV,MODE
339: #
340: # where PATH is the path to the file used as the virtual disk, and VDEV
341: # and MODE have the same meaning as for ``phy'' devices.
342: #
343: # VDEV doesn't really matter for a NetBSD guest OS (it's just used as an index),
344: # but it does for Linux.
345: # Worse, the device has to exist in /dev/ of domain0, because xm will
346: # try to stat() it. This means that in order to load a Linux guest OS
347: # from a NetBSD domain0, you'll have to create /dev/hda1, /dev/hda2, ...
348: # on domain0, with the major/minor from Linux :(
349: # Alternatively it's possible to specify the device number in hex,
350: # e.g. 0x301 for /dev/hda1, 0x302 for /dev/hda2, etc ...
351:
352: disk = [ 'phy:/dev/wd0e,0x1,w' ]
353: #disk = [ 'file:/var/xen/nbsd-disk,0x01,w' ]
354: #disk = [ 'file:/var/xen/nbsd-disk,0x301,w' ]
355:
356: #----------------------------------------------------------------------------
357: # Set the kernel command line for the new domain.
358:
359: # Set root device. This one does matter for NetBSD
360: root = "xbd0"
361: # extra parameters passed to the kernel
362: # this is where you can set boot flags like -s, -a, etc ...
363: #extra = ""
364:
365: #----------------------------------------------------------------------------
366: # Set according to whether you want the domain restarted when it exits.
367: # The default is False.
368: #autorestart = True
369:
370: # end of nbsd config file ====================================================
371: ~~~
372:
373: When a new domain is created, xen calls the
374: `/usr/pkg/etc/xen/vif-bridge`{.filename} script for each virtual network
375: interface created in *domain0*. This can be used to automatically
376: configure the xvif?.? interfaces in *domain0*. In our example, these
377: will be bridged with the bridge0 device in *domain0*, but the bridge has
378: to exist first. To do this, create the file
379: `/etc/ifconfig.bridge0`{.filename} and make it look like this:
380:
381: ~~~ {.programlisting}
382: create
383: !brconfig $int add ex0 up
384: ~~~
385:
386: (replace `ex0`{.literal} with the name of your physical interface). Then
387: bridge0 will be created on boot. See the
388: [bridge(4)](http://netbsd.gw.com/cgi-bin/man-cgi?bridge+4+NetBSD-6.0+i386)
389: man page for details.
390:
391: So, here is a suitable `/usr/pkg/etc/xen/vif-bridge`{.filename} for
392: xvif?.? (a working vif-bridge is also provided with xentools20)
393: configuring:
394:
395:
396: ~~~ {.programlisting}
397: #!/bin/sh
398: #============================================================================
1.2 ! mspo 399: # $NetBSD: howto.mdwn,v 1.1 2013/10/31 12:20:57 mspo Exp $
1.1 mspo 400: #
401: # /usr/pkg/etc/xen/vif-bridge
402: #
403: # Script for configuring a vif in bridged mode with a dom0 interface.
404: # The xend(8) daemon calls a vif script when bringing a vif up or down.
405: # The script name to use is defined in /usr/pkg/etc/xen/xend-config.sxp
406: # in the ``vif-script'' field.
407: #
408: # Usage: vif-bridge up|down [var=value ...]
409: #
410: # Actions:
411: # up Adds the vif interface to the bridge.
412: # down Removes the vif interface from the bridge.
413: #
414: # Variables:
415: # domain name of the domain the interface is on (required).
416: # vifq vif interface name (required).
417: # mac vif MAC address (required).
418: # bridge bridge to add the vif to (required).
419: #
420: # Example invocation:
421: #
422: # vif-bridge up domain=VM1 vif=xvif1.0 mac="ee:14:01:d0:ec:af" bridge=bridge0
423: #
424: #============================================================================
425:
426: # Exit if anything goes wrong
427: set -e
428:
429: echo "vif-bridge $*"
430:
431: # Operation name.
432: OP=$1; shift
433:
434: # Pull variables in args into environment
435: for arg ; do export "${arg}" ; done
436:
437: # Required parameters. Fail if not set.
438: domain=${domain:?}
439: vif=${vif:?}
440: mac=${mac:?}
441: bridge=${bridge:?}
442:
443: # Optional parameters. Set defaults.
444: ip=${ip:-''} # default to null (do nothing)
445:
446: # Are we going up or down?
447: case $OP in
448: up) brcmd='add' ;;
449: down) brcmd='delete' ;;
450: *)
451: echo 'Invalid command: ' $OP
452: echo 'Valid commands are: up, down'
453: exit 1
454: ;;
455: esac
456:
457: # Don't do anything if the bridge is "null".
458: if [ "${bridge}" = "null" ] ; then
459: exit
460: fi
461:
462: # Don't do anything if the bridge doesn't exist.
463: if ! ifconfig -l | grep "${bridge}" >/dev/null; then
464: exit
465: fi
466:
467: # Add/remove vif to/from bridge.
468: ifconfig x${vif} $OP
469: brconfig ${bridge} ${brcmd} x${vif}
470: ~~~
471:
472: Now, running
473:
474: ~~~ {.programlisting}
475: xm create -c /usr/pkg/etc/xen/nbsd
476: ~~~
477:
478: should create a domain and load a NetBSD kernel in it. (Note:
479: `-c`{.code} causes xm to connect to the domain's console once created.)
480: The kernel will try to find its root file system on xbd0 (i.e., wd0e)
481: which hasn't been created yet. wd0e will be seen as a disk device in the
482: new domain, so it will be 'sub-partitioned'. We could attach a ccd to
483: wd0e in *domain0* and partition it, newfs and extract the NetBSD/i386 or
484: amd64 tarballs there, but there's an easier way: load the
485: `netbsd-INSTALL_XEN3_DOMU`{.filename} kernel provided in the NetBSD
486: binary sets. Like other install kernels, it contains a ramdisk with
487: sysinst, so you can install NetBSD using sysinst on your new domain.
488:
489: If you want to install NetBSD/Xen with a CDROM image, the following line
490: should be used in the `/usr/pkg/etc/xen/nbsd`{.filename} file:
491:
492: ~~~ {.programlisting}
493: disk = [ 'phy:/dev/wd0e,0x1,w', 'phy:/dev/cd0a,0x2,r' ]
494: ~~~
495:
496: After booting the domain, the option to install via CDROM may be
497: selected. The CDROM device should be changed to **xbd1d**.
498:
499: Once done installing, **halt -p** the new domain (don't reboot or halt,
500: it would reload the INSTALL\_XEN3\_DOMU kernel even if you changed the
501: config file), switch the config file back to the XEN3\_DOMU kernel, and
502: start the new domain again. Now it should be able to use **root on
503: xbd0a** and you should have a second, functional NetBSD system on your
504: xen installation.
505:
506: When the new domain is booting you'll see some warnings about *wscons*
507: and the pseudo-terminals. These can be fixed by editing the files
508: `/etc/ttys`{.filename} and `/etc/wscons.conf`{.filename}. You must
509: disable all terminals in `/etc/ttys`{.filename}, except *console*, like
510: this:
511:
512: ~~~ {.programlisting}
513: console "/usr/libexec/getty Pc" vt100 on secure
514: ttyE0 "/usr/libexec/getty Pc" vt220 off secure
515: ttyE1 "/usr/libexec/getty Pc" vt220 off secure
516: ttyE2 "/usr/libexec/getty Pc" vt220 off secure
517: ttyE3 "/usr/libexec/getty Pc" vt220 off secure
518: ~~~
519:
520: Finally, all screens must be commented out from
521: `/etc/wscons.conf`{.filename}.
522:
523: It is also desirable to add
524:
525: ~~~ {.programlisting}
526: powerd=YES
527: ~~~
528:
529: in rc.conf. This way, the domain will be properly shut down if **xm
530: shutdown -R** or **xm shutdown -H** is used on the domain0.
531:
532: Your domain should be now ready to work, enjoy.
533:
534: * * * * *
535:
536: ### Creating an unprivileged Linux domain (DomU)
537:
538: Creating unprivileged Linux domains isn't much different from
539: unprivileged NetBSD domains, but there are some details to know.
540:
541: First, the second parameter passed to the disk declaration (the '0x1' in
542: the example below)
543:
544: ~~~ {.programlisting}
545: disk = [ 'phy:/dev/wd0e,0x1,w' ]
546: ~~~
547:
548: does matter to Linux. It wants a Linux device number here (e.g. 0x300
549: for hda). Linux builds device numbers as: (major \<\< 8 + minor). So,
550: hda1 which has major 3 and minor 1 on a Linux system will have device
551: number 0x301. Alternatively, devices names can be used (hda, hdb, ...)
552: as xentools has a table to map these names to devices numbers. To export
553: a partition to a Linux guest we can use:
554:
555: ~~~ {.programlisting}
556: disk = [ 'phy:/dev/wd0e,0x300,w' ]
557: root = "/dev/hda1 ro"
558: ~~~
559:
560: and it will appear as /dev/hda on the Linux system, and be used as root
561: partition.
562:
563: To install the Linux system on the partition to be exported to the guest
564: domain, the following method can be used: install sysutils/e2fsprogs
565: from pkgsrc. Use mke2fs to format the partition that will be the root
566: partition of your Linux domain, and mount it. Then copy the files from a
567: working Linux system, make adjustments in `/etc`{.filename} (fstab,
568: network config). It should also be possible to extract binary packages
569: such as .rpm or .deb directly to the mounted partition using the
570: appropriate tool, possibly running under NetBSD's Linux emulation. Once
571: the filesystem has been populated, umount it. If desirable, the
572: filesystem can be converted to ext3 using tune2fs -j. It should now be
573: possible to boot the Linux guest domain, using one of the
574: vmlinuz-\*-xenU kernels available in the Xen binary distribution.
575:
576: To get the linux console right, you need to add:
577:
578: ~~~ {.programlisting}
579: extra = "xencons=tty1"
580: ~~~
581:
582: to your configuration since not all linux distributions auto-attach a
583: tty to the xen console.
584:
585: * * * * *
586:
587: ### Creating an unprivileged Solaris domain (DomU)
588:
589: Download an Opensolaris [release](http://opensolaris.org/os/downloads/)
590: or [development snapshot](http://genunix.org/) DVD image. Attach the DVD
591: image to a
592: [vnd(4)](http://netbsd.gw.com/cgi-bin/man-cgi?vnd+4+NetBSD-6.0+i386)
593: device. Copy the kernel and ramdisk filesystem image to your dom0
594: filesystem.
595:
596: ~~~ {.programlisting}
597: dom0# mkdir /root/solaris
598: dom0# vnconfig vnd0 osol-1002-124-x86.iso
599: dom0# mount /dev/vnd0a /mnt
600:
601: ## for a 64-bit guest
602: dom0# cp /mnt/boot/amd64/x86.microroot /root/solaris
603: dom0# cp /mnt/platform/i86xpv/kernel/amd64/unix /root/solaris
604:
605: ## for a 32-bit guest
606: dom0# cp /mnt/boot/x86.microroot /root/solaris
607: dom0# cp /mnt/platform/i86xpv/kernel/unix /root/solaris
608:
609: dom0# umount /mnt
610:
611: ~~~
612:
613: Keep the
614: [vnd(4)](http://netbsd.gw.com/cgi-bin/man-cgi?vnd+4+NetBSD-6.0+i386)
615: configured. For some reason the boot process stalls unless the DVD image
616: is attached to the guest as a "phy" device. Create an initial
617: configuration file with the following contents. Substitute */dev/wd0k*
618: with an empty partition at least 8 GB large.
619:
620: ~~~ {.programlisting}
621: memory = 640
622: name = 'solaris'
623: disk = [ 'phy:/dev/wd0k,0,w' ]
624: disk += [ 'phy:/dev/vnd0d,6:cdrom,r' ]
625: vif = [ 'bridge=bridge0' ]
626: kernel = '/root/solaris/unix'
627: ramdisk = '/root/solaris/x86.microroot'
628: # for a 64-bit guest
629: extra = '/platform/i86xpv/kernel/amd64/unix - nowin -B install_media=cdrom'
630: # for a 32-bit guest
631: #extra = '/platform/i86xpv/kernel/unix - nowin -B install_media=cdrom'
632:
633: ~~~
634:
635: Start the guest.
636:
637: ~~~ {.programlisting}
638: dom0# xm create -c solaris.cfg
639: Started domain solaris
640: v3.3.2 chgset 'unavailable'
641: SunOS Release 5.11 Version snv_124 64-bit
642: Copyright 1983-2009 Sun Microsystems, Inc. All rights reserved.
643: Use is subject to license terms.
644: Hostname: opensolaris
645: Remounting root read/write
646: Probing for device nodes ...
647: WARNING: emlxs: ddi_modopen drv/fct failed: err 2
648: Preparing live image for use
649: Done mounting Live image
650:
651: ~~~
652:
653: Make sure the network is configured. Note that it can take a minute for
654: the xnf0 interface to appear.
655:
656: ~~~ {.programlisting}
657: opensolaris console login: jack
658: Password: jack
659: Sun Microsystems Inc. SunOS 5.11 snv_124 November 2008
660: jack@opensolaris:~$ pfexec sh
661: sh-3.2# ifconfig -a
662: sh-3.2# exit
663:
664: ~~~
665:
666: Set a password for VNC and start the VNC server which provides the X11
667: display where the installation program runs.
668:
669: ~~~ {.programlisting}
670: jack@opensolaris:~$ vncpasswd
671: Password: solaris
672: Verify: solaris
673: jack@opensolaris:~$ cp .Xclients .vnc/xstartup
674: jack@opensolaris:~$ vncserver :1
675:
676: ~~~
677:
678: From a remote machine connect to the VNC server. Use **ifconfig xnf0**
679: on the guest to find the correct IP address to use.
680:
681: ~~~ {.programlisting}
682: remote$ vncviewer 172.18.2.99:1
683:
684: ~~~
685:
686: It is also possible to launch the installation on a remote X11 display.
687:
688: ~~~ {.programlisting}
689: jack@opensolaris:~$ export DISPLAY=172.18.1.1:0
690: jack@opensolaris:~$ pfexec gui-install
691:
692: ~~~
693:
694: After the GUI installation is complete you will be asked to reboot.
695: Before that you need to determine the ZFS ID for the new boot filesystem
696: and update the configuration file accordingly. Return to the guest
697: console.
698:
699: ~~~ {.programlisting}
700: jack@opensolaris:~$ pfexec zdb -vvv rpool | grep bootfs
701: bootfs = 43
702: ^C
703: jack@opensolaris:~$
704:
705: ~~~
706:
707: The final configuration file should look like this. Note in particular
708: the last line.
709:
710:
711: ~~~ {.programlisting}
712: memory = 640
713: name = 'solaris'
714: disk = [ 'phy:/dev/wd0k,0,w' ]
715: vif = [ 'bridge=bridge0' ]
716: kernel = '/root/solaris/unix'
717: ramdisk = '/root/solaris/x86.microroot'
718: extra = '/platform/i86xpv/kernel/amd64/unix -B zfs-bootfs=rpool/43,bootpath="/xpvd/xdf@0:a"'
719:
720: ~~~
721:
722: Restart the guest to verify it works correctly.
723:
724: ~~~ {.programlisting}
725: dom0# xm destroy solaris
726: dom0# xm create -c solaris.cfg
727: Using config file "./solaris.cfg".
728: v3.3.2 chgset 'unavailable'
729: Started domain solaris
730: SunOS Release 5.11 Version snv_124 64-bit
731: Copyright 1983-2009 Sun Microsystems, Inc. All rights reserved.
732: Use is subject to license terms.
733: WARNING: emlxs: ddi_modopen drv/fct failed: err 2
734: Hostname: osol
735: Configuring devices.
736: Loading smf(5) service descriptions: 160/160
737: svccfg import warnings. See /var/svc/log/system-manifest-import:default.log .
738: Reading ZFS config: done.
739: Mounting ZFS filesystems: (6/6)
740: Creating new rsa public/private host key pair
741: Creating new dsa public/private host key pair
742:
743: osol console login:
744:
745: ~~~
746:
747: Using PCI devices in guest domains
748: ----------------------------------
749:
750: The domain0 can give other domains access to selected PCI devices. This
751: can allow, for example, a non-privileged domain to have access to a
752: physical network interface or disk controller. However, keep in mind
753: that giving a domain access to a PCI device most likely will give the
754: domain read/write access to the whole physical memory, as PCs don't have
755: an IOMMU to restrict memory access to DMA-capable device. Also, it's not
756: possible to export ISA devices to non-domain0 domains (which means that
757: the primary VGA adapter can't be exported. A guest domain trying to
758: access the VGA registers will panic).
759:
760: This functionality is only available in NetBSD-5.1 (and later) domain0
761: and domU. If the domain0 is NetBSD, it has to be running Xen 3.1, as
762: support has not been ported to later versions at this time.
763:
764: For a PCI device to be exported to a domU, is has to be attached to the
765: `pciback`{.literal} driver in domain0. Devices passed to the domain0 via
766: the pciback.hide boot parameter will attach to `pciback`{.literal}
767: instead of the usual driver. The list of devices is specified as
768: `(bus:dev.func)`{.literal}, where bus and dev are 2-digit hexadecimal
769: numbers, and func a single-digit number:
770:
771: ~~~ {.programlisting}
772: pciback.hide=(00:0a.0)(00:06.0)
773: ~~~
774:
775: pciback devices should show up in the domain0's boot messages, and the
776: devices should be listed in the `/kern/xen/pci`{.filename} directory.
777:
778: PCI devices to be exported to a domU are listed in the `pci`{.literal}
779: array of the domU's config file, with the format
780: `'0000:bus:dev.func'`{.literal}
781:
782: ~~~ {.programlisting}
783: pci = [ '0000:00:06.0', '0000:00:0a.0' ]
784: ~~~
785:
786: In the domU an `xpci`{.literal} device will show up, to which one or
787: more pci busses will attach. Then the PCI drivers will attach to PCI
788: busses as usual. Note that the default NetBSD DOMU kernels do not have
789: `xpci`{.literal} or any PCI drivers built in by default; you have to
790: build your own kernel to use PCI devices in a domU. Here's a kernel
791: config example:
792:
793: ~~~ {.programlisting}
794: include "arch/i386/conf/XEN3_DOMU"
795: #include "arch/i386/conf/XENU" # in NetBSD 3.0
796:
797: # Add support for PCI busses to the XEN3_DOMU kernel
798: xpci* at xenbus ?
799: pci* at xpci ?
800:
801: # Now add PCI and related devices to be used by this domain
802: # USB Controller and Devices
803:
804: # PCI USB controllers
805: uhci* at pci? dev ? function ? # Universal Host Controller (Intel)
806:
807: # USB bus support
808: usb* at uhci?
809:
810: # USB Hubs
811: uhub* at usb?
812: uhub* at uhub? port ? configuration ? interface ?
813:
814: # USB Mass Storage
815: umass* at uhub? port ? configuration ? interface ?
816: wd* at umass?
817: # SCSI controllers
818: ahc* at pci? dev ? function ? # Adaptec [23]94x, aic78x0 SCSI
819:
820: # SCSI bus support (for both ahc and umass)
821: scsibus* at scsi?
822:
823: # SCSI devices
824: sd* at scsibus? target ? lun ? # SCSI disk drives
825: cd* at scsibus? target ? lun ? # SCSI CD-ROM drives
826: ~~~
827:
828: Links and further information
829: -----------------------------
830:
831: - The HowTo on [Installing into
832: RAID-1](http://mail-index.NetBSD.org/port-xen/2006/03/01/0010.html)
833: gives some hints on using Xen (grub) with NetBSD's RAIDframe
834: - Harold Gutch wrote documentation on [setting up a Linux DomU with a
835: NetBSD Dom0](http://www.gutch.de/NetBSD/docs/xen.html)
836: - An example of how to use NetBSD's native bootloader to load
837: NetBSD/Xen instead of Grub can be found in the i386/amd64
838: [boot(8)](http://netbsd.gw.com/cgi-bin/man-cgi?boot+8+NetBSD-6.0+i386)
839: and
840: [boot.cfg(5)](http://netbsd.gw.com/cgi-bin/man-cgi?boot.cfg+5+NetBSD-6.0+i386)
841: manpages.
842:
843:
CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb