Annotation of wikisrc/ports/xen/howto.mdwn, revision 1.143
1.5 mspo 1: Introduction
1.13 gdt 2: ============
1.1 mspo 3:
4: [![[Xen
1.140 khorben 5: screenshot]](https://www.netbsd.org/gallery/in-Action/hubertf-xens.png)](https://www.netbsd.org/gallery/in-Action/hubertf-xen.png)
1.1 mspo 6:
1.58 gdt 7: Xen is a hypervisor (or virtual machine monitor) for x86 hardware
1.12 gdt 8: (i686-class or higher), which supports running multiple guest
1.58 gdt 9: operating systems on a single physical machine. Xen is a Type 1 or
10: bare-metal hypervisor; one uses the Xen kernel to control the CPU,
11: memory and console, a dom0 operating system which mediates access to
12: other hardware (e.g., disks, network, USB), and one or more domU
13: operating systems which operate in an unprivileged virtualized
14: environment. IO requests from the domU systems are forwarded by the
15: hypervisor (Xen) to the dom0 to be fulfilled.
1.12 gdt 16:
17: Xen supports two styles of guests. The original is Para-Virtualized
18: (PV) which means that the guest OS does not attempt to access hardware
19: directly, but instead makes hypercalls to the hypervisor. This is
20: analogous to a user-space program making system calls. (The dom0
21: operating system uses PV calls for some functions, such as updating
22: memory mapping page tables, but has direct hardware access for disk
23: and network.) PV guests must be specifically coded for Xen.
24:
25: The more recent style is HVM, which means that the guest does not have
26: code for Xen and need not be aware that it is running under Xen.
27: Attempts to access hardware registers are trapped and emulated. This
28: style is less efficient but can run unmodified guests.
29:
1.123 gdt 30: Generally any machine that runs NetBSD/amd64 will work with Xen and PV
31: guests. In theory i386 computers (without x86_64/amd64 support) can
32: be used for Xen <= 4.2, but we have no recent reports of this working
33: (this is a hint). For HVM guests, hardware support is needed, but it
34: is common on recent machines. For Intel CPUs, one needs the VT-x
35: extension, shown in "cpuctl identify 0" as VMX. For AMD CPUs, one
36: needs the AMD-V extensions, shown in "cpuctl identify 0" as SVM.
37: There are further features for IOMMU virtualization, Intel's VT-d and
38: AMD's AMD-Vi. TODO: Explain whether Xen on NetBSD makes use of these
39: features. TODO: Review by someone who really understands this.
1.19 gdt 40:
1.123 gdt 41: Note that a FreeBSD dom0 requires VT-x and VT-d (or equivalent); this
42: is because the FreeBSD dom0 does not run in PV mode.
1.118 gdt 43:
1.27 jnemeth 44: At boot, the dom0 kernel is loaded as a module with Xen as the kernel.
1.12 gdt 45: The dom0 can start one or more domUs. (Booting is explained in detail
46: in the dom0 section.)
47:
48: NetBSD supports Xen in that it can serve as dom0, be used as a domU,
49: and that Xen kernels and tools are available in pkgsrc. This HOWTO
50: attempts to address both the case of running a NetBSD dom0 on hardware
1.24 gdt 51: and running domUs under it (NetBSD and other), and also running NetBSD
52: as a domU in a VPS.
1.12 gdt 53:
1.142 gdt 54: Xen 3.1 in pkgsrc used to support "PCI passthrough", which means that
1.20 gdt 55: specific PCI devices can be made available to a specific domU instead
56: of the dom0. This can be useful to let a domU run X11, or access some
57: network interface or other peripheral.
58:
1.111 wiz 59: NetBSD 6 and earlier supported Xen 2; support was removed from NetBSD
1.104 gdt 60: 7. Xen 2 has been removed from pkgsrc.
1.54 gdt 61:
1.12 gdt 62: Prerequisites
1.13 gdt 63: -------------
1.12 gdt 64:
65: Installing NetBSD/Xen is not extremely difficult, but it is more
66: complex than a normal installation of NetBSD.
1.15 gdt 67: In general, this HOWTO is occasionally overly restrictive about how
68: things must be done, guiding the reader to stay on the established
69: path when there are no known good reasons to stray.
1.12 gdt 70:
71: This HOWTO presumes a basic familiarity with the Xen system
1.123 gdt 72: architecture, with installing NetBSD on i386/amd64 hardware, and with
73: installing software from pkgsrc. See also the [Xen
74: website](http://www.xenproject.org/).
1.1 mspo 75:
1.15 gdt 76: Versions of Xen and NetBSD
77: ==========================
78:
1.27 jnemeth 79: Most of the installation concepts and instructions are independent
80: of Xen version and NetBSD version. This section gives advice on
81: which version to choose. Versions not in pkgsrc and older unsupported
82: versions of NetBSD are intentionally ignored.
1.15 gdt 83:
1.133 gdt 84: The term "amd64" is used to refer to both the NetBSD port and to the
85: hardware architecture on which it runs. (Such hardware is made by
86: both Intel and AMD, and in 2016 a normal PC has this CPU
87: architecture.)
88:
1.15 gdt 89: Xen
90: ---
91:
1.111 wiz 92: In NetBSD, Xen is provided in pkgsrc, via matching pairs of packages
1.15 gdt 93: xenkernel and xentools. We will refer only to the kernel versions,
94: but note that both packages must be installed together and must have
95: matching versions.
96:
1.133 gdt 97: xenkernel3 provides Xen 3.1. It is no longer maintained by Xen, and
98: the last applied security patch was in 2011. Thus, it should not be
99: used. It supports PCI passthrough, which is why people use it anyway.
100: Xen 3.1 runs on i386 (both non-PAE and PAE) and amd64 hardware.
1.104 gdt 101:
102: xenkernel33 provides Xen 3.3. It is no longer maintained by Xen, and
103: the last applied security patch was in 2012. Thus, it should not be
1.133 gdt 104: used. Xen 3.3 runs on i386 PAE and amd64 hardware. There are no good
1.104 gdt 105: reasons to run this version.
106:
107: xenkernel41 provides Xen 4.1. It is no longer maintained by Xen, but
1.133 gdt 108: as of 2016-12 received backported security patches. Xen 4.1 runs on
109: i386 PAE and amd64 hardware. There are no good reasons to run this
1.104 gdt 110: version.
1.102 gdt 111:
1.137 gdt 112: Note that 3.1, 3.3 and 4.1 have been removed from pkgsrc-current, but
113: are in 2016Q4. They will be removed from this HOWTO sometime after
1.138 wiz 114: 2017Q1.
1.137 gdt 115:
1.104 gdt 116: xenkernel42 provides Xen 4.2. It is no longer maintained by Xen, but
1.133 gdt 117: as of 2016-12 received backported security patches. Xen 4.2 runs on
118: i386 PAE and amd64 hardware. The only reason to run this is if you
119: need to use xm instead of xl, or if you need to run on hardware that
120: supports i386 but not amd64. (This might also be useful if you need
121: an i386 dom0, if it turns out that an amd64 Xen kernel and an i386
122: dom0 is problematic.)
1.104 gdt 123:
1.142 gdt 124: xenkernel45 provides Xen 4.5. Security advisories released in 2018-05
125: did not include support for 4.5. Xen 4.5 and newer runs on amd64
126: hardware only. While slightly old, 4.5 has been tested and run by
127: others, so it is a very conservative choice.
128:
129: xenkernel46 provides Xen 4.6, and was added to pkgsrc as of 2016-05.
130: As of 2018-05, security patches were released by Xen and are expected
131: to be applied to pkgsrc. Xen 4.6 runs on amd64 hardware only. (If
132: using Ubuntu guests, be sure to have the xentools46 from December,
133: 2016). 4.6 is perhaps an old choice, or perhaps the standard
134: approach.
135:
136: Xen 4.7 was released in 2016-06 and is not in pkgsrc.
137:
138: xenkernel48 provides Xen 4.8, and was added to pkgsrc in 2017-03. As
139: of 2018-05, security patches were released by Xen and are expected to
140: be applied to pkgsrc. 4.8 is perhaps the standard choice, or perhaps
141: slightly new.
1.85 gdt 142:
1.142 gdt 143: Xen 4.9 and 4.10 are not in pkgsrc.
1.113 gdt 144:
1.96 gdt 145: See also the [Xen Security Advisory page](http://xenbits.xen.org/xsa/).
146:
1.85 gdt 147: Note that NetBSD support is called XEN3. It works with Xen 3 and Xen
148: 4 because the hypercall interface has been stable.
1.20 gdt 149:
1.19 gdt 150: Xen command program
151: -------------------
152:
1.79 gdt 153: Early Xen used a program called xm to manipulate the system from the
1.19 gdt 154: dom0. Starting in 4.1, a replacement program with similar behavior
1.79 gdt 155: called xl is provided, but it does not work well in 4.1. In 4.2, both
1.127 gdt 156: xm and xl work fine. 4.4 is the last version that has xm.
157:
158: You must make a global choice to use xm or xl, because it affects not
159: only which command you use, but the command used by rc.d scripts
160: (specifically xendomains) and which daemons should be run. The
161: xentools packages provide xm for 3.1, 3.3 and 4.1 and xl for 4.2 and up.
162:
163: In 4.2, you can choose to use xm by simply changing the ctl_command
1.135 gdt 164: variable and setting xend=YES in rc.conf.
1.127 gdt 165:
166: With xl, virtual devices are configured in parallel, which can cause
167: problems if they are written assuming serial operation (e.g., updating
1.130 gdt 168: firewall rules without explicit locking). There is now locking for
169: the provided scripts, which works for normal casses (e.g, file-backed
170: xbd, where a vnd must be allocated). But, as of 201612, it has not
171: been adequately tested for a complex custom setup with a large number
172: of interfaces.
1.19 gdt 173:
1.15 gdt 174: NetBSD
175: ------
176:
1.142 gdt 177: The netbsd-7, netbsd-8, and -current branches are all reasonable
1.105 gdt 178: choices, with more or less the same considerations for non-Xen use.
179: Therefore, netbsd-7 is recommended as the stable version of the most
1.142 gdt 180: recent release for production use. (Note that netbsd-7 (and therefore
181: 8/current) have a important scheduler fix (in November of 2015)
182: affecting contention between dom0 and domUs; see
1.117 gdt 183: https://releng.netbsd.org/cgi-bin/req-7.cgi?show=1040 for a
1.142 gdt 184: description.) For production, netbsd-7 is appropriate. For learning,
185: netbsd-8 is appropriate. For developing Xen, netbsd-current may be
186: appropriate.
1.15 gdt 187:
188: As of NetBSD 6, a NetBSD domU will support multiple vcpus. There is
189: no SMP support for NetBSD as dom0. (The dom0 itself doesn't really
1.105 gdt 190: need SMP for dom0 functions; the lack of support is really a problem
191: when using a dom0 as a normal computer.)
1.15 gdt 192:
1.18 gdt 193: Architecture
194: ------------
195:
1.133 gdt 196: Xen itself can run on i386 (Xen < 4.2) or amd64 hardware (all Xen
1.105 gdt 197: versions). (Practically, almost any computer where one would want to
198: run Xen today supports amd64.)
1.99 gdt 199:
1.133 gdt 200: Xen, the dom0 system, and each domU system can be either i386 or
201: amd64. When building a xenkernel package, one obtains an i386 Xen
1.134 wiz 202: kernel on an i386 host, and an amd64 Xen kernel on an amd64 host. If
1.133 gdt 203: the Xen kernel is i386, then the dom0 kernel and all domU kernels must
204: be i386. With an amd64 Xen kernel, an amd64 dom0 kernel is known to
205: work, and an i386 dom0 kernel should in theory work. An amd64
206: Xen/dom0 is known to support both i386 and amd64 domUs.
207:
208: i386 dom0 and domU kernels must be PAE (except for an i386 Xen 3.1
1.135 gdt 209: kernel, where one can use non-PAE for dom0 and all domUs); PAE kernels
210: are included in the NetBSD default build. (Note that emacs (at least)
211: fails if run on i386 with PAE when built without, and vice versa,
212: presumably due to bugs in the undump code.)
213:
214: Because of the above, the standard approach is to use an amd64 Xen
215: kernel and NetBSD/amd64 for the dom0. For domUs, NetBSD/i386 (with
216: the PAE kernel) and NetBSD/amd64 are in widespread use, and there is
217: little to no Xen-specific reason to prefer one over the other.
1.133 gdt 218:
219: Note that to use an i386 dom0 with Xen 4.5 or higher, one must build
1.135 gdt 220: (or obtain from pre-built packages) an amd64 Xen kernel and install
221: that on the system. (One must also use a PAE i386 kernel, but this is
222: also required with an i386 Xen kernel.). Almost no one in the
223: NetBSD/Xen community does this, and the standard, well-tested,
224: approach is to use an amd64 dom0.
225:
226: A [posting on
227: xen-devel](https://lists.xen.org/archives/html/xen-devel/2012-07/msg00085.html)
228: explained that PV system call overhead was higher on amd64, and thus
229: there is some notion that i386 guests are faster. It goes on to
230: caution that the total situation is complex and not entirely
231: understood. On top of that caution, the post is about Linux, not
232: NetBSD. TODO: Include link to benchmarks, if someone posts them.
1.29 gdt 233:
1.89 gdt 234: Stability
235: ---------
236:
237: Mostly, NetBSD as a dom0 or domU is quite stable.
238: However, there are some open PRs indicating problems.
239:
1.91 gdt 240: - [PR 48125](http://gnats.netbsd.org/48125)
1.89 gdt 241:
242: Note also that there are issues with sparse vnd(4) instances, but
1.105 gdt 243: these are not about Xen -- they just are noticed with sparse vnd(4)
244: instances in support of virtual disks in a dom0.
1.89 gdt 245:
1.15 gdt 246: Recommendation
247: --------------
248:
1.142 gdt 249: Therefore, this HOWTO recommends running xenkernel46, xl, the NetBSD 7
250: stable branch, and therefore to use an amd64 kernel as the dom0.
251: Either the i386PAE or amd64 version of NetBSD may be used as domUs.
252:
253: A tentative replacement recommendation is xenkernel48, xl, and NetBSD
254: 8.
1.15 gdt 255:
1.136 gdt 256: Because bugs are fixed quite often, and because of Xen security
257: advisories, it is good to stay up to date with NetBSD (tracking a
258: stable branch), with the Xen kernel (tracking a Xen version via
259: pkgsrc), and with the Xen tools. Specifically, NetBSD (-7 and
260: -current) got an important fix affecting dom0/domU timesharing in
261: November, 2015, and xentools46 got a fix to enable Ubuntu guests to
262: boot in December, 2016.
263:
1.125 gdt 264: Status
265: ------
1.36 gdt 266:
1.120 gdt 267: Ideally, all versions of Xen in pkgsrc would build on all supported
1.121 gdt 268: versions of NetBSD/amd64, to the point where this section would be
269: silly. However, that has not always been the case. Besides aging
270: code and aging compilers, qemu (included in xentools for HVM support)
1.124 gdt 271: is difficult to build. Note that there is intentionally no data for
1.125 gdt 272: 4.5+ up for i386, and often omits xentools info if the corresponding
273: kernel fails.
274:
275: The following table gives status, with the date last checked
276: (generally on the most recent quarterly branch). The first code is
277: "builds" if it builds ok, and "FAIL" for a failure to build. The
278: second code/date only appears for xenkernel* and is "works" if it runs
1.135 gdt 279: ok as a dom0 and can support a domU, and "FAIL" if it won't boot or
280: run a domU.
1.124 gdt 281:
282: xenkernel3 netbsd-6 i386 FAIL 201612
283: xenkernel33 netbsd-6 i386 FAIL 201612
1.125 gdt 284: xenkernel41 netbsd-6 i386 builds 201612
285: xenkernel42 netbsd-6 i386 builds 201612
1.126 gdt 286: xentools3 netbsd-6 i386 FAIL 201612
1.128 gdt 287: xentools33 netbsd-6 i386 FAIL 201612
1.125 gdt 288: xentools41 netbsd-6 i386 builds 201612
1.126 gdt 289: xentools42 netbsd-6 i386 FAIL 201612
1.64 gdt 290:
1.124 gdt 291: xenkernel3 netbsd-7 i386 FAIL 201412
292: xenkernel33 netbsd-7 i386 FAIL 201412
1.125 gdt 293: xenkernel41 netbsd-7 i386 builds 201412
294: xenkernel42 netbsd-7 i386 builds 201412
295: xentools41 netbsd-7 i386 builds 201412
1.122 gdt 296: xentools42 netbsd-7 i386 ??FAIL 201412
1.121 gdt 297:
1.124 gdt 298: xenkernel3 netbsd-6 amd64 FAIL 201612
299: xenkernel33 netbsd-6 amd64 FAIL 201612
1.125 gdt 300: xenkernel41 netbsd-6 amd64 builds 201612 works 201612
1.126 gdt 301: xenkernel42 netbsd-6 amd64 builds 201612 works 201612
1.125 gdt 302: xenkernel45 netbsd-6 amd64 builds 201612
303: xenkernel46 netbsd-6 amd64 builds 201612
304: xentools41 netbsd-6 amd64 builds 201612
305: xentools42 netbsd-6 amd64 builds 201612
306: xentools45 netbsd-6 amd64 builds 201612
1.124 gdt 307: xentools46 netbsd-6 amd64 FAIL 201612
1.121 gdt 308:
1.125 gdt 309: xenkernel3 netbsd-7 amd64 builds 201612
310: xenkernel33 netbsd-7 amd64 builds 201612
311: xenkernel41 netbsd-7 amd64 builds 201612
312: xenkernel42 netbsd-7 amd64 builds 201612
313: xenkernel45 netbsd-7 amd64 builds 201612
314: xenkernel46 netbsd-7 amd64 builds 201612
315: xentools3 netbsd-7 amd64 builds 201612
316: xentools3-hvm netbsd-7 amd64 builds 201612
1.121 gdt 317: xentools33 netbsd-7 amd64 FAIL 201612
1.125 gdt 318: xentools41 netbsd-7 amd64 builds 201612
319: xentools42 netbsd-7 amd64 builds 201612
320: xentools45 netbsd-7 amd64 builds 201612
321: xentools46 netbsd-7 amd64 builds 201612
1.69 gdt 322:
1.15 gdt 323: NetBSD as a dom0
324: ================
325:
326: NetBSD can be used as a dom0 and works very well. The following
327: sections address installation, updating NetBSD, and updating Xen.
1.19 gdt 328: Note that it doesn't make sense to talk about installing a dom0 OS
329: without also installing Xen itself. We first address installing
330: NetBSD, which is not yet a dom0, and then adding Xen, pivoting the
331: NetBSD install to a dom0 install by just changing the kernel and boot
332: configuration.
1.15 gdt 333:
1.45 gdt 334: For experimenting with Xen, a machine with as little as 1G of RAM and
335: 100G of disk can work. For running many domUs in productions, far
1.135 gdt 336: more will be needed; e.g. 4-8G and 1T of disk is reasonable for a
337: half-dozen domUs of 512M and 32G each. Basically, the RAM and disk
338: have to be bigger than the sum of the RAM/disk needs of the dom0 and
339: all the domUs.
1.45 gdt 340:
1.142 gdt 341: In 2018-05, trouble booting a dom0 was reported with 256M of RAM: with
342: 512M it worked reliably. This does not make sense, but if you see
343: "not ELF" after Xen boots, try increasing dom0 RAM.
344:
1.15 gdt 345: Styles of dom0 operation
346: ------------------------
347:
348: There are two basic ways to use Xen. The traditional method is for
349: the dom0 to do absolutely nothing other than providing support to some
350: number of domUs. Such a system was probably installed for the sole
351: purpose of hosting domUs, and sits in a server room on a UPS.
352:
353: The other way is to put Xen under a normal-usage computer, so that the
354: dom0 is what the computer would have been without Xen, perhaps a
355: desktop or laptop. Then, one can run domUs at will. Purists will
356: deride this as less secure than the previous approach, and for a
357: computer whose purpose is to run domUs, they are right. But Xen and a
1.93 gdt 358: dom0 (without domUs) is not meaningfully less secure than the same
1.15 gdt 359: things running without Xen. One can boot Xen or boot regular NetBSD
360: alternately with little problems, simply refraining from starting the
361: Xen daemons when not running Xen.
362:
363: Note that NetBSD as dom0 does not support multiple CPUs. This will
1.51 gdt 364: limit the performance of the Xen/dom0 workstation approach. In theory
365: the only issue is that the "backend drivers" are not yet MPSAFE:
1.140 khorben 366: https://mail-index.netbsd.org/netbsd-users/2014/08/29/msg015195.html
1.15 gdt 367:
1.19 gdt 368: Installation of NetBSD
369: ----------------------
1.13 gdt 370:
1.19 gdt 371: First,
1.27 jnemeth 372: [install NetBSD/amd64](/guide/inst/)
1.19 gdt 373: just as you would if you were not using Xen.
374: However, the partitioning approach is very important.
375:
376: If you want to use RAIDframe for the dom0, there are no special issues
377: for Xen. Typically one provides RAID storage for the dom0, and the
1.22 gdt 378: domU systems are unaware of RAID. The 2nd-stage loader bootxx_* skips
1.111 wiz 379: over a RAID1 header to find /boot from a file system within a RAID
1.22 gdt 380: partition; this is no different when booting Xen.
1.19 gdt 381:
382: There are 4 styles of providing backing storage for the virtual disks
1.93 gdt 383: used by domUs: raw partitions, LVM, file-backed vnd(4), and SAN.
1.19 gdt 384:
385: With raw partitions, one has a disklabel (or gpt) partition sized for
386: each virtual disk to be used by the domU. (If you are able to predict
387: how domU usage will evolve, please add an explanation to the HOWTO.
388: Seriously, needs tend to change over time.)
389:
1.27 jnemeth 390: One can use [lvm(8)](/guide/lvm/) to create logical devices to use
391: for domU disks. This is almost as efficient as raw disk partitions
392: and more flexible. Hence raw disk partitions should typically not
393: be used.
1.19 gdt 394:
1.111 wiz 395: One can use files in the dom0 file system, typically created by dd'ing
1.19 gdt 396: /dev/zero to create a specific size. This is somewhat less efficient,
397: but very convenient, as one can cp the files for backup, or move them
398: between dom0 hosts.
399:
400: Finally, in theory one can place the files backing the domU disks in a
401: SAN. (This is an invitation for someone who has done this to add a
402: HOWTO page.)
1.1 mspo 403:
1.19 gdt 404: Installation of Xen
405: -------------------
1.1 mspo 406:
1.20 gdt 407: In the dom0, install sysutils/xenkernel42 and sysutils/xentools42 from
1.127 gdt 408: pkgsrc (or another matching pair). See [the pkgsrc
1.140 khorben 409: documentation](https://www.NetBSD.org/docs/pkgsrc/) for help with
1.127 gdt 410: pkgsrc. Ensure that your packages are recent; the HOWTO does not
411: contemplate old builds.
412:
1.20 gdt 413:
414: For Xen 3.1, support for HVM guests is in sysutils/xentool3-hvm. More
415: recent versions have HVM support integrated in the main xentools
416: package. It is entirely reasonable to run only PV guests.
417:
418: Next you need to install the selected Xen kernel itself, which is
419: installed by pkgsrc as "/usr/pkg/xen*-kernel/xen.gz". Copy it to /.
420: For debugging, one may copy xen-debug.gz; this is conceptually similar
421: to DIAGNOSTIC and DEBUG in NetBSD. xen-debug.gz is basically only
422: useful with a serial console. Then, place a NetBSD XEN3_DOM0 kernel
423: in /, copied from releasedir/amd64/binary/kernel/netbsd-XEN3_DOM0.gz
1.75 gdt 424: of a NetBSD build. If using i386, use
425: releasedir/i386/binary/kernel/netbsd-XEN3PAE_DOM0.gz. (If using Xen
426: 3.1 and i386, you may use XEN3_DOM0 with the non-PAE Xen. But you
427: should not use Xen 3.1.) Both xen and the NetBSD kernel may be (and
428: typically are) left compressed.
429:
1.135 gdt 430: In a dom0, kernfs is mandatory for xend to communicate with the
431: kernel, so ensure that /kern is in fstab. (A standard NetBSD install
432: should already mount /kern.)
1.20 gdt 433:
434: Because you already installed NetBSD, you have a working boot setup
435: with an MBR bootblock, either bootxx_ffsv1 or bootxx_ffsv2 at the
1.135 gdt 436: beginning of your root file system, have /boot, and likely also
1.20 gdt 437: /boot.cfg. (If not, fix before continuing!)
438:
1.76 gdt 439: Add a line to to /boot.cfg to boot Xen. See boot.cfg(5) for an
440: example. The basic line is
1.20 gdt 441:
1.142 gdt 442: menu=Xen:load /netbsd-XEN3_DOM0.gz console=pc;multiboot /xen.gz dom0_mem=512M
1.20 gdt 443:
1.142 gdt 444: which specifies that the dom0 should have 512M, leaving the rest to be
1.77 gdt 445: allocated for domUs. To use a serial console, use
446:
1.142 gdt 447: menu=Xen:load /netbsd-XEN3_DOM0.gz;multiboot /xen.gz dom0_mem=512M console=com1 com1=9600,8n1
1.77 gdt 448:
449: which will use the first serial port for Xen (which counts starting
1.139 gson 450: from 1, unlike NetBSD which counts starting from 0), forcing
451: speed/parity. Because the NetBSD command line lacks a
452: "console=pc" argument, it will use the default "xencons" console device,
453: which directs the console I/O through Xen to the same console device Xen
454: itself uses (in this case, the serial port).
455:
456: In an attempt to add performance, one can also add
1.37 gdt 457:
458: dom0_max_vcpus=1 dom0_vcpus_pin
459:
460: to force only one vcpu to be provided (since NetBSD dom0 can't use
1.111 wiz 461: more) and to pin that vcpu to a physical CPU. TODO: benchmark this.
1.20 gdt 462:
1.93 gdt 463: Xen has [many boot
464: options](http://xenbits.xenproject.org/docs/4.5-testing/misc/xen-command-line.html),
1.111 wiz 465: and other than dom0 memory and max_vcpus, they are generally not
1.93 gdt 466: necessary.
467:
1.20 gdt 468: As with non-Xen systems, you should have a line to boot /netbsd (a
1.127 gdt 469: kernel that works without Xen). Consider a line to boot /netbsd.ok (a
470: fallback version of the non-Xen kernel, updated manually when you are
471: sure /netbsd is ok). Consider also a line to boot fallback versions
472: of Xen and the dom0 kernel, but note that non-Xen NetBSD can be used
473: to resolve Xen booting issues.
474:
475: Probably you want a default=N line to choose Xen in the absence of
476: intervention.
1.1 mspo 477:
1.76 gdt 478: Now, reboot so that you are running a DOM0 kernel under Xen, rather
479: than GENERIC without Xen.
480:
1.54 gdt 481: Using grub (historic)
482: ---------------------
483:
484: Before NetBSD's native bootloader could support Xen, the use of
485: grub was recommended. If necessary, see the
1.135 gdt 486: [old grub information](/ports/xen/howto-grub).
1.54 gdt 487:
1.28 gdt 488: The [HowTo on Installing into
1.140 khorben 489: RAID-1](https://mail-index.NetBSD.org/port-xen/2006/03/01/0010.html)
1.28 gdt 490: explains how to set up booting a dom0 with Xen using grub with
491: NetBSD's RAIDframe. (This is obsolete with the use of NetBSD's native
1.135 gdt 492: boot. Now, just create a system with RAID-1, and alter /boot.cfg as
493: described above.)
1.28 gdt 494:
1.21 gdt 495: Configuring Xen
496: ---------------
497:
1.53 gdt 498: Xen logs will be in /var/log/xen.
499:
1.76 gdt 500: Now, you have a system that will boot Xen and the dom0 kernel, but not
501: do anything else special. Make sure that you have rebooted into Xen.
502: There will be no domUs, and none can be started because you still have
1.102 gdt 503: to configure the dom0 daemons.
1.21 gdt 504:
1.102 gdt 505: The daemons which should be run vary with Xen version and with whether
1.127 gdt 506: one is using xm or xl. The Xen 3.1, 3.3 and 4.1 packages use xm. Xen
507: 4.2 and up packages use xl. To use xm with 4.2, edit xendomains to
508: use xm instead.
509:
1.132 gdt 510: For 3.1 and 3.3, you should enable xend and xenbackendd:
1.31 gdt 511:
1.32 gdt 512: xend=YES
513: xenbackendd=YES
1.31 gdt 514:
1.132 gdt 515: For 4.1 and up, you should enable xencommons. Not enabling xencommons
516: will result in a hang; it is necessary to hit ^C on the console to let
517: the machine finish booting. If you are using xm (default in 4.1, or
518: if you changed xendomains in 4.2), you should also enable xend:
1.31 gdt 519:
1.132 gdt 520: xend=YES # only if using xm, and only installed <= 4.2
1.53 gdt 521: xencommons=YES
1.31 gdt 522:
523: TODO: Recommend for/against xen-watchdog.
1.27 jnemeth 524:
1.53 gdt 525: After you have configured the daemons and either started them (in the
1.79 gdt 526: order given) or rebooted, use xm or xl to inspect Xen's boot messages,
1.102 gdt 527: available resources, and running domains. An example with xl follows:
1.34 gdt 528:
1.102 gdt 529: # xl dmesg
1.43 gdt 530: [xen's boot info]
1.102 gdt 531: # xl info
1.43 gdt 532: [available memory, etc.]
1.102 gdt 533: # xl list
1.43 gdt 534: Name Id Mem(MB) CPU State Time(s) Console
535: Domain-0 0 64 0 r---- 58.1
1.33 gdt 536:
1.88 gdt 537: ### Issues with xencommons
538:
539: xencommons starts xenstored, which stores data on behalf of dom0 and
540: domUs. It does not currently work to stop and start xenstored.
541: Certainly all domUs should be shutdown first, following the sort order
542: of the rc.d scripts. However, the dom0 sets up state with xenstored,
543: and is not notified when xenstored exits, leading to not recreating
544: the state when the new xenstored starts. Until there's a mechanism to
545: make this work, one should not expect to be able to restart xenstored
546: (and thus xencommons). There is currently no reason to expect that
547: this will get fixed any time soon.
548:
1.127 gdt 549: ### No-longer needed advice about devices
550:
551: The installation of NetBSD should already have created devices for xen
552: (xencons, xenevt, xsd_kva), but if they are not present, create them:
553:
554: cd /dev && sh MAKEDEV xen
555:
1.41 gdt 556: anita (for testing NetBSD)
557: --------------------------
558:
1.82 gdt 559: With the setup so far (assuming 4.2/xl), one should be able to run
560: anita (see pkgsrc/misc/py-anita) to test NetBSD releases, by doing (as
561: root, because anita must create a domU):
562:
563: anita --vmm=xl test file:///usr/obj/i386/
564:
565: Alternatively, one can use --vmm=xm to use xm-based domU creation
566: instead (and must, on Xen <= 4.1). TODO: confirm that anita xl really works.
567:
1.40 gdt 568: Xen-specific NetBSD issues
569: --------------------------
570:
571: There are (at least) two additional things different about NetBSD as a
572: dom0 kernel compared to hardware.
573:
1.111 wiz 574: One is that the module ABI is different because some of the #defines
1.109 gdt 575: change, so one must build modules for Xen. As of netbsd-7, the build
576: system does this automatically. TODO: check this. (Before building
577: Xen modules was added, it was awkward to use modules to the point
578: where it was considered that it did not work.)
1.40 gdt 579:
580: The other difference is that XEN3_DOM0 does not have exactly the same
581: options as GENERIC. While it is debatable whether or not this is a
582: bug, users should be aware of this and can simply add missing config
583: items if desired.
584:
1.15 gdt 585: Updating NetBSD in a dom0
586: -------------------------
587:
588: This is just like updating NetBSD on bare hardware, assuming the new
589: version supports the version of Xen you are running. Generally, one
590: replaces the kernel and reboots, and then overlays userland binaries
591: and adjusts /etc.
592:
593: Note that one must update both the non-Xen kernel typically used for
594: rescue purposes and the DOM0 kernel used with Xen.
595:
1.55 gdt 596: Converting from grub to /boot
597: -----------------------------
598:
599: These instructions were [TODO: will be] used to convert a system from
600: grub to /boot. The system was originally installed in February of
601: 2006 with a RAID1 setup and grub to boot Xen 2, and has been updated
602: over time. Before these commands, it was running NetBSD 6 i386, Xen
603: 4.1 and grub, much like the message linked earlier in the grub
604: section.
605:
1.111 wiz 606: # Install MBR bootblocks on both disks.
1.55 gdt 607: fdisk -i /dev/rwd0d
608: fdisk -i /dev/rwd1d
609: # Install NetBSD primary boot loader (/ is FFSv1) into RAID1 components.
610: installboot -v /dev/rwd0d /usr/mdec/bootxx_ffsv1
611: installboot -v /dev/rwd1d /usr/mdec/bootxx_ffsv1
612: # Install secondary boot loader
613: cp -p /usr/mdec/boot /
1.111 wiz 614: # Create boot.cfg following earlier guidance:
1.142 gdt 615: menu=Xen:load /netbsd-XEN3PAE_DOM0.gz console=pc;multiboot /xen.gz dom0_mem=512M
616: menu=Xen.ok:load /netbsd-XEN3PAE_DOM0.ok.gz console=pc;multiboot /xen.ok.gz dom0_mem=512M
1.55 gdt 617: menu=GENERIC:boot
618: menu=GENERIC single-user:boot -s
619: menu=GENERIC.ok:boot netbsd.ok
620: menu=GENERIC.ok single-user:boot netbsd.ok -s
621: menu=Drop to boot prompt:prompt
622: default=1
623: timeout=30
624:
625: TODO: actually do this and fix it if necessary.
1.22 gdt 626:
1.102 gdt 627: Upgrading Xen versions
1.15 gdt 628: ---------------------
629:
1.110 gdt 630: Minor version upgrades are trivial. Just rebuild/replace the
631: xenkernel version and copy the new xen.gz to / (where /boot.cfg
632: references it), and reboot.
633:
634: Major version upgrades are conceptually not difficult, but can run
635: into all the issues found when installing Xen. Assuming migration
636: from 4.1 to 4.2, remove the xenkernel41 and xentools41 packages and
637: install the xenkernel42 and xentools42 packages. Copy the 4.2 xen.gz
638: to /.
1.21 gdt 639:
1.102 gdt 640: Ensure that the contents of /etc/rc.d/xen* are correct. Specifically,
641: they must match the package you just installed and not be left over
642: from some previous installation.
643:
644: Enable the correct set of daemons; see the configuring section above.
645: (Upgrading from 3.x to 4.x without doing this will result in a hang.)
646:
647: Ensure that the domU config files are valid for the new version.
1.110 gdt 648: Specifically, for 4.x remove autorestart=True, and ensure that disks
649: are specified with numbers as the second argument, as the examples
650: above show, and not NetBSD device names.
1.15 gdt 651:
1.97 gdt 652: Hardware known to work
653: ----------------------
654:
655: Arguably, this section is misplaced, and there should be a page of
656: hardware that runs NetBSD/amd64 well, with the mostly-well-founded
657: assumption that NetBSD/xen runs fine on any modern hardware that
1.129 gdt 658: NetBSD/amd64 runs well on. Until then, we give motherboard/CPU (and
659: sometimes RAM) pairs/triples to aid those choosing a motherboard.
660: Note that Xen systems usually do not run X, so a listing here does not
661: imply that X works at all.
1.97 gdt 662:
663: Supermicro X9SRL-F, Xeon E5-1650 v2, 96 GiB ECC
664: Supermicro ??, Atom C2758 (8 core), 32 GiB ECC
665: ASUS M5A78L-M/USB3 AM3+ microATX, AMD Piledriver X8 4000MHz, 16 GiB ECC
666:
667: Older hardware:
668:
1.98 gdt 669: Intel D915GEV, Pentium4 CPU 3.40GHz, 4GB 533MHz Synchronous DDR2
1.129 gdt 670: INTEL DG33FB, "Intel(R) Core(TM)2 Duo CPU E6850 @ 3.00GHz"
671: INTEL DG33FB, "Intel(R) Core(TM)2 Duo CPU E8400 @ 3.00GHz"
1.28 gdt 672:
1.82 gdt 673: Running Xen under qemu
674: ----------------------
675:
676: The astute reader will note that this section is somewhat twisted.
677: However, it can be useful to run Xen under qemu either because the
678: version of NetBSD as a dom0 does not run on the hardware in use, or to
679: generate automated test cases involving Xen.
680:
1.84 gdt 681: In 2015-01, the following combination was reported to mostly work:
1.82 gdt 682:
683: host OS: NetBSD/amd64 6.1.4
684: qemu: 2.2.0 from pkgsrc
685: Xen kernel: xenkernel42-4.2.5nb1 from pkgsrc
686: dom0 kernel: NetBSD/amd64 6.1.5
687: Xen tools: xentools42-4.2.5 from pkgsrc
688:
1.140 khorben 689: See [PR 47720](https://gnats.netbsd.org/47720) for a problem with dom0
1.91 gdt 690: shutdown.
1.84 gdt 691:
1.28 gdt 692: Unprivileged domains (domU)
693: ===========================
694:
695: This section describes general concepts about domUs. It does not
1.33 gdt 696: address specific domU operating systems or how to install them. The
697: config files for domUs are typically in /usr/pkg/etc/xen, and are
1.60 wiki 698: typically named so that the file name, domU name and the domU's host
1.33 gdt 699: name match.
700:
1.111 wiz 701: The domU is provided with CPU and memory by Xen, configured by the
1.33 gdt 702: dom0. The domU is provided with disk and network by the dom0,
703: mediated by Xen, and configured in the dom0.
704:
705: Entropy in domUs can be an issue; physical disks and network are on
706: the dom0. NetBSD's /dev/random system works, but is often challenged.
707:
1.48 gdt 708: Config files
709: ------------
710:
711: There is no good order to present config files and the concepts
712: surrounding what is being configured. We first show an example config
713: file, and then in the various sections give details.
714:
715: See (at least in xentools41) /usr/pkg/share/examples/xen/xmexample*,
716: for a large number of well-commented examples, mostly for running
717: GNU/Linux.
718:
719: The following is an example minimal domain configuration file
720: "/usr/pkg/etc/xen/foo". It is (with only a name change) an actual
721: known working config file on Xen 4.1 (NetBSD 5 amd64 dom0 and NetBSD 5
722: i386 domU). The domU serves as a network file server.
723:
724: # -*- mode: python; -*-
725:
726: kernel = "/netbsd-XEN3PAE_DOMU-i386-foo.gz"
727: memory = 1024
728: vif = [ 'mac=aa:00:00:d1:00:09,bridge=bridge0' ]
729: disk = [ 'file:/n0/xen/foo-wd0,0x0,w',
730: 'file:/n0/xen/foo-wd1,0x1,w' ]
731:
732: The domain will have the same name as the file. The kernel has the
733: host/domU name in it, so that on the dom0 one can update the various
734: domUs independently. The vif line causes an interface to be provided,
735: with a specific mac address (do not reuse MAC addresses!), in bridge
736: mode. Two disks are provided, and they are both writable; the bits
737: are stored in files and Xen attaches them to a vnd(4) device in the
1.111 wiz 738: dom0 on domain creation. The system treats xbd0 as the boot device
1.48 gdt 739: without needing explicit configuration.
740:
741: By default xm looks for domain config files in /usr/pkg/etc/xen. Note
742: that "xm create" takes the name of a config file, while other commands
743: take the name of a domain. To create the domain, connect to the
744: console, create the domain while attaching the console, shutdown the
745: domain, and see if it has finished stopping, do (or xl with Xen >=
746: 4.2):
747:
748: xm create foo
749: xm console foo
750: xm create -c foo
751: xm shutdown foo
1.90 gdt 752: xm list
1.48 gdt 753:
754: Typing ^] will exit the console session. Shutting down a domain is
755: equivalent to pushing the power button; a NetBSD domU will receive a
756: power-press event and do a clean shutdown. Shutting down the dom0
757: will trigger controlled shutdowns of all configured domUs.
758:
759: domU kernels
760: ------------
761:
762: On a physical computer, the BIOS reads sector 0, and a chain of boot
763: loaders finds and loads a kernel. Normally this comes from the root
1.111 wiz 764: file system. With Xen domUs, the process is totally different. The
1.48 gdt 765: normal path is for the domU kernel to be a file in the dom0's
1.111 wiz 766: file system. At the request of the dom0, Xen loads that kernel into a
1.48 gdt 767: new domU instance and starts execution. While domU kernels can be
768: anyplace, reasonable places to store domU kernels on the dom0 are in /
769: (so they are near the dom0 kernel), in /usr/pkg/etc/xen (near the
770: config files), or in /u0/xen (where the vdisks are).
771:
1.59 gdt 772: Note that loading the domU kernel from the dom0 implies that boot
773: blocks, /boot, /boot.cfg, and so on are all ignored in the domU.
1.48 gdt 774: See the VPS section near the end for discussion of alternate ways to
775: obtain domU kernels.
776:
1.33 gdt 777: CPU and memory
778: --------------
779:
1.48 gdt 780: A domain is provided with some number of vcpus, less than the number
1.111 wiz 781: of CPUs seen by the hypervisor. (For a dom0, this is controlled by
1.48 gdt 782: the boot argument "dom0_max_vcpus=1".) For a domU, it is controlled
783: from the config file by the "vcpus = N" directive.
784:
785: A domain is provided with memory; this is controlled in the config
786: file by "memory = N" (in megabytes). In the straightforward case, the
787: sum of the the memory allocated to the dom0 and all domUs must be less
1.33 gdt 788: than the available memory.
789:
790: Xen also provides a "balloon" driver, which can be used to let domains
791: use more memory temporarily. TODO: Explain better, and explain how
792: well it works with NetBSD.
1.28 gdt 793:
794: Virtual disks
795: -------------
796:
1.33 gdt 797: With the file/vnd style, typically one creates a directory,
798: e.g. /u0/xen, on a disk large enough to hold virtual disks for all
799: domUs. Then, for each domU disk, one writes zeros to a file that then
800: serves to hold the virtual disk's bits; a suggested name is foo-xbd0
801: for the first virtual disk for the domU called foo. Writing zeros to
802: the file serves two purposes. One is that preallocating the contents
803: improves performance. The other is that vnd on sparse files has
804: failed to work. TODO: give working/notworking NetBSD versions for
1.127 gdt 805: sparse vnd and gnats reference. Note that the use of file/vnd for Xen
806: is not really different than creating a file-backed virtual disk for
807: some other purpose, except that xentools handles the vnconfig
808: commands. To create an empty 4G virtual disk, simply do
1.39 gdt 809:
810: dd if=/dev/zero of=foo-xbd0 bs=1m count=4096
1.33 gdt 811:
1.89 gdt 812: Do not use qemu-img-xen, because this will create sparse file. There
813: have been recent (2015) reports of sparse vnd(4) devices causing
814: lockups, but there is apparently no PR.
815:
1.33 gdt 816: With the lvm style, one creates logical devices. They are then used
1.48 gdt 817: similarly to vnds. TODO: Add an example with lvm.
818:
819: In domU config files, the disks are defined as a sequence of 3-tuples.
820: The first element is "method:/path/to/disk". Common methods are
821: "file:" for file-backed vnd. and "phy:" for something that is already
822: a (TODO: character or block) device.
823:
824: The second element is an artifact of how virtual disks are passed to
825: Linux, and a source of confusion with NetBSD Xen usage. Linux domUs
826: are given a device name to associate with the disk, and values like
827: "hda1" or "sda1" are common. In a NetBSD domU, the first disk appears
828: as xbd0, the second as xbd1, and so on. However, xm/xl demand a
829: second argument. The name given is converted to a major/minor by
1.49 gdt 830: calling stat(2) on the name in /dev and this is passed to the domU.
831: In the general case, the dom0 and domU can be different operating
1.48 gdt 832: systems, and it is an unwarranted assumption that they have consistent
833: numbering in /dev, or even that the dom0 OS has a /dev. With NetBSD
834: as both dom0 and domU, using values of 0x0 for the first disk and 0x1
1.49 gdt 835: for the second works fine and avoids this issue. For a GNU/Linux
836: guest, one can create /dev/hda1 in /dev, or to pass 0x301 for
837: /dev/hda1.
1.48 gdt 838:
839: The third element is "w" for writable disks, and "r" for read-only
840: disks.
1.28 gdt 841:
1.127 gdt 842: Note that NetBSD by default creates only vnd[0123]. If you need more
843: than 4 total virtual disks at a time, run e.g. "./MAKEDEV vnd4" in the
844: dom0.
845:
846: Note that NetBSD by default creates only xbd[0123]. If you need more
847: virtual disks in a domU, run e.g. "./MAKEDEV xbd4" in the domU.
848:
1.28 gdt 849: Virtual Networking
850: ------------------
851:
1.111 wiz 852: Xen provides virtual Ethernets, each of which connects the dom0 and a
1.46 gdt 853: domU. For each virtual network, there is an interface "xvifN.M" in
854: the dom0, and in domU index N, a matching interface xennetM (NetBSD
855: name). The interfaces behave as if there is an Ethernet with two
1.111 wiz 856: adapters connected. From this primitive, one can construct various
1.46 gdt 857: configurations. We focus on two common and useful cases for which
858: there are existing scripts: bridging and NAT.
1.28 gdt 859:
1.48 gdt 860: With bridging (in the example above), the domU perceives itself to be
861: on the same network as the dom0. For server virtualization, this is
862: usually best. Bridging is accomplished by creating a bridge(4) device
863: and adding the dom0's physical interface and the various xvifN.0
864: interfaces to the bridge. One specifies "bridge=bridge0" in the domU
865: config file. The bridge must be set up already in the dom0; an
866: example /etc/ifconfig.bridge0 is:
1.46 gdt 867:
868: create
869: up
870: !brconfig bridge0 add wm0
1.28 gdt 871:
872: With NAT, the domU perceives itself to be behind a NAT running on the
873: dom0. This is often appropriate when running Xen on a workstation.
1.48 gdt 874: TODO: NAT appears to be configured by "vif = [ '' ]".
1.28 gdt 875:
1.49 gdt 876: The MAC address specified is the one used for the interface in the new
1.53 gdt 877: domain. The interface in dom0 will use this address XOR'd with
1.49 gdt 878: 00:00:00:01:00:00. Random MAC addresses are assigned if not given.
879:
1.33 gdt 880: Sizing domains
881: --------------
882:
883: Modern x86 hardware has vast amounts of resources. However, many
884: virtual servers can function just fine on far less. A system with
1.142 gdt 885: 512M of RAM and a 4G disk can be a reasonable choice. Note that it is
1.33 gdt 886: far easier to adjust virtual resources than physical ones. For
887: memory, it's just a config file edit and a reboot. For disk, one can
888: create a new file and vnconfig it (or lvm), and then dump/restore,
889: just like updating physical disks, but without having to be there and
890: without those pesky connectors.
891:
1.48 gdt 892: Starting domains automatically
893: ------------------------------
1.28 gdt 894:
1.48 gdt 895: To start domains foo at bar at boot and shut them down cleanly on dom0
896: shutdown, in rc.conf add:
1.28 gdt 897:
1.48 gdt 898: xendomains="foo bar"
1.28 gdt 899:
1.111 wiz 900: Note that earlier versions of the xentools41 xendomains rc.d script
901: used xl, when one should use xm with 4.1.
1.28 gdt 902:
903: Creating specific unprivileged domains (domU)
904: =============================================
1.14 gdt 905:
906: Creating domUs is almost entirely independent of operating system. We
1.49 gdt 907: have already presented the basics of config files. Note that you must
908: have already completed the dom0 setup so that "xl list" (or "xm list")
909: works.
1.14 gdt 910:
911: Creating an unprivileged NetBSD domain (domU)
912: ---------------------------------------------
1.1 mspo 913:
1.49 gdt 914: See the earlier config file, and adjust memory. Decide on how much
915: storage you will provide, and prepare it (file or lvm).
916:
1.111 wiz 917: While the kernel will be obtained from the dom0 file system, the same
1.49 gdt 918: file should be present in the domU as /netbsd so that tools like
919: savecore(8) can work. (This is helpful but not necessary.)
920:
921: The kernel must be specifically for Xen and for use as a domU. The
922: i386 and amd64 provide the following kernels:
923:
924: i386 XEN3_DOMU
925: i386 XEN3PAE_DOMU
1.95 gdt 926: amd64 XEN3_DOMU
1.5 mspo 927:
1.49 gdt 928: Unless using Xen 3.1 (and you shouldn't) with i386-mode Xen, you must
929: use the PAE version of the i386 kernel.
930:
931: This will boot NetBSD, but this is not that useful if the disk is
932: empty. One approach is to unpack sets onto the disk outside of xen
933: (by mounting it, just as you would prepare a physical disk for a
934: system you can't run the installer on).
935:
936: A second approach is to run an INSTALL kernel, which has a miniroot
937: and can load sets from the network. To do this, copy the INSTALL
938: kernel to / and change the kernel line in the config file to:
1.5 mspo 939:
1.49 gdt 940: kernel = "/home/bouyer/netbsd-INSTALL_XEN3_DOMU"
1.5 mspo 941:
1.49 gdt 942: Then, start the domain as "xl create -c configname".
1.1 mspo 943:
1.49 gdt 944: Alternatively, if you want to install NetBSD/Xen with a CDROM image, the following
945: line should be used in the config file.
1.1 mspo 946:
1.3 mspo 947: disk = [ 'phy:/dev/wd0e,0x1,w', 'phy:/dev/cd0a,0x2,r' ]
1.1 mspo 948:
949: After booting the domain, the option to install via CDROM may be
1.49 gdt 950: selected. The CDROM device should be changed to `xbd1d`.
1.1 mspo 951:
1.49 gdt 952: Once done installing, "halt -p" the new domain (don't reboot or halt,
953: it would reload the INSTALL_XEN3_DOMU kernel even if you changed the
954: config file), switch the config file back to the XEN3_DOMU kernel,
955: and start the new domain again. Now it should be able to use "root on
956: xbd0a" and you should have a, functional NetBSD domU.
1.1 mspo 957:
1.49 gdt 958: TODO: check if this is still accurate.
1.1 mspo 959: When the new domain is booting you'll see some warnings about *wscons*
960: and the pseudo-terminals. These can be fixed by editing the files
1.5 mspo 961: `/etc/ttys` and `/etc/wscons.conf`. You must disable all terminals in
962: `/etc/ttys`, except *console*, like this:
1.1 mspo 963:
1.3 mspo 964: console "/usr/libexec/getty Pc" vt100 on secure
965: ttyE0 "/usr/libexec/getty Pc" vt220 off secure
966: ttyE1 "/usr/libexec/getty Pc" vt220 off secure
967: ttyE2 "/usr/libexec/getty Pc" vt220 off secure
968: ttyE3 "/usr/libexec/getty Pc" vt220 off secure
1.1 mspo 969:
1.5 mspo 970: Finally, all screens must be commented out from `/etc/wscons.conf`.
1.1 mspo 971:
972: It is also desirable to add
973:
1.49 gdt 974: powerd=YES
1.1 mspo 975:
1.5 mspo 976: in rc.conf. This way, the domain will be properly shut down if
1.53 gdt 977: `xm shutdown -R` or `xm shutdown -H` is used on the dom0.
1.1 mspo 978:
1.92 gdt 979: It is not strictly necessary to have a kernel (as /netbsd) in the domU
1.111 wiz 980: file system. However, various programs (e.g. netstat) will use that
1.92 gdt 981: kernel to look up symbols to read from kernel virtual memory. If
982: /netbsd is not the running kernel, those lookups will fail. (This is
983: not really a Xen-specific issue, but because the domU kernel is
984: obtained from the dom0, it is far more likely to be out of sync or
985: missing with Xen.)
986:
1.14 gdt 987: Creating an unprivileged Linux domain (domU)
1.5 mspo 988: --------------------------------------------
1.1 mspo 989:
990: Creating unprivileged Linux domains isn't much different from
991: unprivileged NetBSD domains, but there are some details to know.
992:
993: First, the second parameter passed to the disk declaration (the '0x1' in
994: the example below)
995:
1.3 mspo 996: disk = [ 'phy:/dev/wd0e,0x1,w' ]
1.1 mspo 997:
998: does matter to Linux. It wants a Linux device number here (e.g. 0x300
1.49 gdt 999: for hda). Linux builds device numbers as: (major \<\< 8 + minor).
1000: So, hda1 which has major 3 and minor 1 on a Linux system will have
1001: device number 0x301. Alternatively, devices names can be used (hda,
1002: hdb, ...) as xentools has a table to map these names to devices
1003: numbers. To export a partition to a Linux guest we can use:
1.1 mspo 1004:
1.49 gdt 1005: disk = [ 'phy:/dev/wd0e,0x300,w' ]
1006: root = "/dev/hda1 ro"
1.1 mspo 1007:
1008: and it will appear as /dev/hda on the Linux system, and be used as root
1009: partition.
1010:
1.49 gdt 1011: To install the Linux system on the partition to be exported to the
1012: guest domain, the following method can be used: install
1013: sysutils/e2fsprogs from pkgsrc. Use mke2fs to format the partition
1014: that will be the root partition of your Linux domain, and mount it.
1015: Then copy the files from a working Linux system, make adjustments in
1016: `/etc` (fstab, network config). It should also be possible to extract
1017: binary packages such as .rpm or .deb directly to the mounted partition
1018: using the appropriate tool, possibly running under NetBSD's Linux
1.111 wiz 1019: emulation. Once the file system has been populated, umount it. If
1020: desirable, the file system can be converted to ext3 using tune2fs -j.
1.49 gdt 1021: It should now be possible to boot the Linux guest domain, using one of
1022: the vmlinuz-\*-xenU kernels available in the Xen binary distribution.
1.1 mspo 1023:
1.111 wiz 1024: To get the Linux console right, you need to add:
1.1 mspo 1025:
1.3 mspo 1026: extra = "xencons=tty1"
1.1 mspo 1027:
1.111 wiz 1028: to your configuration since not all Linux distributions auto-attach a
1.1 mspo 1029: tty to the xen console.
1030:
1.14 gdt 1031: Creating an unprivileged Solaris domain (domU)
1.5 mspo 1032: ----------------------------------------------
1.1 mspo 1033:
1.50 gdt 1034: See possibly outdated
1035: [Solaris domU instructions](/ports/xen/howto-solaris/).
1.5 mspo 1036:
1.1 mspo 1037:
1.52 gdt 1038: PCI passthrough: Using PCI devices in guest domains
1039: ---------------------------------------------------
1.1 mspo 1040:
1.53 gdt 1041: The dom0 can give other domains access to selected PCI
1.52 gdt 1042: devices. This can allow, for example, a non-privileged domain to have
1043: access to a physical network interface or disk controller. However,
1044: keep in mind that giving a domain access to a PCI device most likely
1045: will give the domain read/write access to the whole physical memory,
1046: as PCs don't have an IOMMU to restrict memory access to DMA-capable
1.53 gdt 1047: device. Also, it's not possible to export ISA devices to non-dom0
1.52 gdt 1048: domains, which means that the primary VGA adapter can't be exported.
1049: A guest domain trying to access the VGA registers will panic.
1050:
1.53 gdt 1051: If the dom0 is NetBSD, it has to be running Xen 3.1, as support has
1.52 gdt 1052: not been ported to later versions at this time.
1053:
1054: For a PCI device to be exported to a domU, is has to be attached to
1055: the "pciback" driver in dom0. Devices passed to the dom0 via the
1056: pciback.hide boot parameter will attach to "pciback" instead of the
1057: usual driver. The list of devices is specified as "(bus:dev.func)",
1.5 mspo 1058: where bus and dev are 2-digit hexadecimal numbers, and func a
1059: single-digit number:
1.1 mspo 1060:
1.52 gdt 1061: pciback.hide=(00:0a.0)(00:06.0)
1.1 mspo 1062:
1.52 gdt 1063: pciback devices should show up in the dom0's boot messages, and the
1.5 mspo 1064: devices should be listed in the `/kern/xen/pci` directory.
1.1 mspo 1065:
1.52 gdt 1066: PCI devices to be exported to a domU are listed in the "pci" array of
1067: the domU's config file, with the format "0000:bus:dev.func".
1.1 mspo 1068:
1.52 gdt 1069: pci = [ '0000:00:06.0', '0000:00:0a.0' ]
1.1 mspo 1070:
1.52 gdt 1071: In the domU an "xpci" device will show up, to which one or more pci
1.111 wiz 1072: buses will attach. Then the PCI drivers will attach to PCI buses as
1.52 gdt 1073: usual. Note that the default NetBSD DOMU kernels do not have "xpci"
1074: or any PCI drivers built in by default; you have to build your own
1075: kernel to use PCI devices in a domU. Here's a kernel config example;
1076: note that only the "xpci" lines are unusual.
1077:
1078: include "arch/i386/conf/XEN3_DOMU"
1079:
1.111 wiz 1080: # Add support for PCI buses to the XEN3_DOMU kernel
1.52 gdt 1081: xpci* at xenbus ?
1082: pci* at xpci ?
1083:
1084: # PCI USB controllers
1085: uhci* at pci? dev ? function ? # Universal Host Controller (Intel)
1086:
1087: # USB bus support
1088: usb* at uhci?
1089:
1090: # USB Hubs
1091: uhub* at usb?
1092: uhub* at uhub? port ? configuration ? interface ?
1093:
1094: # USB Mass Storage
1095: umass* at uhub? port ? configuration ? interface ?
1096: wd* at umass?
1097: # SCSI controllers
1098: ahc* at pci? dev ? function ? # Adaptec [23]94x, aic78x0 SCSI
1099:
1100: # SCSI bus support (for both ahc and umass)
1101: scsibus* at scsi?
1102:
1103: # SCSI devices
1104: sd* at scsibus? target ? lun ? # SCSI disk drives
1105: cd* at scsibus? target ? lun ? # SCSI CD-ROM drives
1.1 mspo 1106:
1107:
1.28 gdt 1108: NetBSD as a domU in a VPS
1109: =========================
1110:
1111: The bulk of the HOWTO is about using NetBSD as a dom0 on your own
1112: hardware. This section explains how to deal with Xen in a domU as a
1113: virtual private server where you do not control or have access to the
1.70 gdt 1114: dom0. This is not intended to be an exhaustive list of VPS providers;
1115: only a few are mentioned that specifically support NetBSD.
1.28 gdt 1116:
1.52 gdt 1117: VPS operators provide varying degrees of access and mechanisms for
1118: configuration. The big issue is usually how one controls which kernel
1.111 wiz 1119: is booted, because the kernel is nominally in the dom0 file system (to
1120: which VPS users do not normally have access). A second issue is how
1.70 gdt 1121: to install NetBSD.
1.52 gdt 1122: A VPS user may want to compile a kernel for security updates, to run
1123: npf, run IPsec, or any other reason why someone would want to change
1124: their kernel.
1125:
1.111 wiz 1126: One approach is to have an administrative interface to upload a kernel,
1.68 gdt 1127: or to select from a prepopulated list. Other approaches are pygrub
1.59 gdt 1128: (deprecated) and pvgrub, which are ways to have a bootloader obtain a
1.111 wiz 1129: kernel from the domU file system. This is closer to a regular physical
1.59 gdt 1130: computer, where someone who controls a machine can replace the kernel.
1.52 gdt 1131:
1.74 gdt 1132: A second issue is multiple CPUs. With NetBSD 6, domUs support
1133: multiple vcpus, and it is typical for VPS providers to enable multiple
1134: CPUs for NetBSD domUs.
1135:
1.68 gdt 1136: pygrub
1.59 gdt 1137: -------
1.52 gdt 1138:
1.111 wiz 1139: pygrub runs in the dom0 and looks into the domU file system. This
1140: implies that the domU must have a kernel in a file system in a format
1.68 gdt 1141: known to pygrub. As of 2014, pygrub seems to be of mostly historical
1142: interest.
1.52 gdt 1143:
1.59 gdt 1144: pvgrub
1145: ------
1146:
1147: pvgrub is a version of grub that uses PV operations instead of BIOS
1148: calls. It is booted from the dom0 as the domU kernel, and then reads
1.111 wiz 1149: /grub/menu.lst and loads a kernel from the domU file system.
1.59 gdt 1150:
1.70 gdt 1151: [Panix](http://www.panix.com/) lets users use pvgrub. Panix reports
1.71 gdt 1152: that pvgrub works with FFsv2 with 16K/2K and 32K/4K block/frag sizes
1153: (and hence with defaults from "newfs -O 2"). See [Panix's pvgrub
1.70 gdt 1154: page](http://www.panix.com/v-colo/grub.html), which describes only
1.74 gdt 1155: Linux but should be updated to cover NetBSD :-).
1.70 gdt 1156:
1157: [prgmr.com](http://prgmr.com/) also lets users with pvgrub to boot
1158: their own kernel. See then [prgmr.com NetBSD
1.74 gdt 1159: HOWTO](http://wiki.prgmr.com/mediawiki/index.php/NetBSD_as_a_DomU)
1160: (which is in need of updating).
1.59 gdt 1161:
1.70 gdt 1162: It appears that [grub's FFS
1163: code](http://xenbits.xensource.com/hg/xen-unstable.hg/file/bca284f67702/tools/libfsimage/ufs/fsys_ufs.c)
1164: does not support all aspects of modern FFS, but there are also reports
1.72 gdt 1165: that FFSv2 works fine. At prgmr, typically one has an ext2 or FAT
1.70 gdt 1166: partition for the kernel with the intent that grub can understand it,
1167: which leads to /netbsd not being the actual kernel. One must remember
1.111 wiz 1168: to update the special boot partition.
1.59 gdt 1169:
1170: Amazon
1171: ------
1172:
1.143 ! wiki 1173: See the [Amazon EC2 page](/amazon_ec2/).
1.44 gdt 1174:
1175: Using npf
1176: ---------
1177:
1.81 gdt 1178: In standard kernels, npf is a module, and thus cannot be loaded in a
1.44 gdt 1179: DOMU kernel.
1180:
1.95 gdt 1181: TODO: Explain how to compile npf into a custom kernel, answering (but
1182: note that the problem was caused by not booting the right kernel)
1183: [this email to
1.140 khorben 1184: netbsd-users](https://mail-index.netbsd.org/netbsd-users/2014/12/26/msg015576.html).
1.65 gdt 1185:
1186: TODO items for improving NetBSD/xen
1187: ===================================
1188:
1.93 gdt 1189: * Make the NetBSD dom0 kernel work with SMP.
1190: * Test the Xen 4.5 packages adequately to be able to recommend them as
1191: the standard approach.
1192: * Get PCI passthrough working on Xen 4.5
1.65 gdt 1193: * Get pvgrub into pkgsrc, either via xentools or separately.
1194: * grub
1.70 gdt 1195: * Check/add support to pkgsrc grub2 for UFS2 and arbitrary
1.66 gdt 1196: fragsize/blocksize (UFS2 support may be present; the point is to
1.111 wiz 1197: make it so that with any UFS1/UFS2 file system setup that works
1.66 gdt 1198: with NetBSD grub will also work).
1.140 khorben 1199: See [pkg/40258](https://gnats.netbsd.org/40258).
1.65 gdt 1200: * Push patches upstream.
1201: * Get UFS2 patches into pvgrub.
1202: * Add support for PV ops to a version of /boot, and make it usable as
1203: a kernel in Xen, similar to pvgrub.
1.93 gdt 1204: * Solve somehow the issue with modules for GENERIC not being loadable
1205: in a Xen dom0 or domU kernel.
1206:
1207: Random pointers
1208: ===============
1209:
1.117 gdt 1210: This section contains links from elsewhere not yet integrated into the
1211: HOWTO, and other guides.
1.93 gdt 1212:
1213: * http://www.lumbercartel.ca/library/xen/
1214: * http://pbraun.nethence.com/doc/sysutils/xen_netbsd_dom0.html
1.117 gdt 1215: * https://gmplib.org/~tege/xen.html
CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb