Annotation of wikisrc/ports/evbarm/raspberry_pi.mdwn, revision 1.81
1.1 jakllsch 1: [[!meta title="NetBSD/evbarm on Raspberry Pi"]]
2:
1.39 wiki 3: This page attempts to document and coordinate efforts towards NetBSD/evbarm on [Raspberry Pi](http://www.raspberrypi.org). All board variants are supported.
4:
1.70 gdt 5: Initial, limited, Raspberry Pi support was introduced in NetBSD 6.0. NetBSD 7.0 adds complete support for the board, along with introducing support for the quad-core Raspberry Pi 2 board. Raspberry Pi 3 support was added for NetBSD 8, and backported to NetBSD 7 in July of 2017. (This page assumes those using NetBSD 7 are using 7.2, or the netbsd-7 branch after mid 2018.)
1.39 wiki 6:
1.3 wiki 7: [[images/raspberrypi.jpg]]
8:
1.26 wiki 9: [[!toc levels=2]]
10:
1.14 wiki 11: <small>([Raspberry Pi image](http://www.flickr.com/photos/42325803@N07/8118758647/) by Christopher Lee used under CC-By-2.0 license)</small>
1.3 wiki 12:
1.54 gdt 13: # What works (and what doesn't yet)
1.53 gdt 14:
1.70 gdt 15: ## NetBSD 7 and NetBSD 8
1.53 gdt 16:
1.74 gdt 17: - RaspberryPi 1, 2, 3 (except Pi 3 builtin WiFi and bluetooth)
18: - multiple processors on 2/3
19: - boots normally to multiuser, with FAT32 boot partition on uSD
20: - root filesystem can be uSD or USB-attached mass storage
1.53 gdt 21: - serial or graphics console (with EDID query / parsing)
1.74 gdt 22: - X11 via HDMI
23: - GPU (VCHIQ) - 3D and video decode. man page missing.
24: - USB host controller - dwctwo(4) and most devices work
25: - USB Ethernet - usmsc(4)
1.53 gdt 26: - DMA controller driver and sdhc(4) support
1.74 gdt 27: - RNG
1.53 gdt 28: - Audio: works. man page missing.
1.74 gdt 29: - GPIO
1.53 gdt 30: - I²C: works, could use enhancements, man page
31: - SPI: could use enhancements, man page
32:
33: ## NetBSD current
34:
1.74 gdt 35: - Raspberry Pi 3 builtin bluetooth
1.53 gdt 36: - Raspberry Pi 3 new SD host controller driver
37:
1.54 gdt 38: ## What needs work
1.53 gdt 39:
40: - USB (host); isochronous transfers.
1.74 gdt 41: - Raspberry Pi 3 builtin WiFi
1.53 gdt 42:
1.57 gdt 43: # CPU types
44:
1.59 gdt 45: - Raspberry Pi 1 uses "earmv6hf".
1.81 ! gdt 46: - Raspberry Pi 0 uses "\todo".
1.59 gdt 47: - Raspberry Pi 2 uses "earmv7hf".
1.64 gdt 48: - Raspberry Pi 3 uses "earmv7hf".
1.81 ! gdt 49: - Raspberry Pi 0W uses "\todo".
1.57 gdt 50:
1.74 gdt 51: Note that one can run earmv6hf code on the 2 and 3. See also
52: [[NetBSD/aarch64|aarch64]] for running the Pi 2/3 in 64-bit mode.
1.70 gdt 53:
1.7 wiki 54: # Installation
1.53 gdt 55:
1.62 gdt 56: ## SD card structure
57:
1.65 gdt 58: The Raspberry Pi looks for firmware and kernel.img on the first FAT32 partition of the uSD card. A separate kernel (kernel7.img) is used on RPI2 and RPI3.
1.62 gdt 59:
1.65 gdt 60: The NetBSD kernel will then use the FFS partition as the root filesystem.
61:
62: A 2 GB card is the smallest workable size. The NetBSD filesystem will be expanded to fit.
1.63 gdt 63:
1.62 gdt 64: ## Choosing a version
65:
1.71 gdt 66: First, decide if you want to install a formal release (7.2 or 8.0), a stable branch build (netbsd-7, netbsd-8), or NetBSD-current. For people who don't know how to choose among those, 8.0 or netbsd-8 is probably best.
1.65 gdt 67:
68: See also "ebijun's image", below, which is NetBSD-current and includes packages.
1.58 gdt 69:
70: ## Getting bits to install
71:
72: You can either build a release yourself with build.sh, or get one from the NetBSD FTP servers.
73:
1.65 gdt 74: Both will provide rpi.img.gz and rpi_inst.img.gz. Each is an image to be written to a uSD card, and has a FAT32 partition for booting. In rpi.img.gz, there is also an FFS partition for NetBSD.
1.58 gdt 75:
76: ### Building yourself
77:
1.81 ! gdt 78: Getting sources and building a release with build.sh is not special for evbarm. However, the evbarm port has a very large number of CPU types, compared to i386 and amd64 which have one. The standard approach is to use -m to define MACHINE and -a to define "MACHINE_ARCH". build.sh supports aliases that can be passed a MACHINE value, but denote both MACHINE and a MACHINE_ARCH. The third line is an example (equal to the second in effect).
1.66 gdt 79:
1.59 gdt 80: - ./build.sh -m evbarm -a earmv6hf -u release
81: - ./build.sh -m evbarm -a earmv7hf -u release
1.81 ! gdt 82: - ./build.sh -m earmv7hf-el -u release
! 83:
! 84: Consider setting RELEASEMACHINEDIR if you wish to build multiple MACHINE_ARCH values on the same system; see build.sh.
1.58 gdt 85:
86: ### NetBSD FTP servers
87:
88: NetBSD provides nightly builds on [nyftp.netbsd.org](http://nyftp.netbsd.org/pub/NetBSD-daily/). These are equivalent to building yourself.
89:
1.59 gdt 90: - The 'evbarm-earmv6hf/binary/gzimg/' directory contains an rpi.img file that can be used as a single image for both boards.
1.71 gdt 91: - The 'evbarm-earmv7hf/binary/gzimg/' directory contains an armv7.img file that is optimized for Raspberry Pi 2/3.
92: - The old stable build directory will be under netbsd-7/YYYYMMDDHHMMZ/ (for example, http://nyftp.netbsd.org/pub/NetBSD-daily/netbsd-7/201710201440Z/evbarm-earmv6hf/binary/gzimg)
93: - The stable build directory will be under netbsd-8/YYYYMMDDHHMMZ/ (for example, http://nyftp.netbsd.org/pub/NetBSD-daily/netbsd-8/201710211010Z/evbarm-earmv6hf/binary/gzimg/)
1.59 gdt 94: - The HEAD/current directory build will be under HEAD/YYYYMMDDHHMMZ/ (for example, http://nyftp.netbsd.org/pub/NetBSD-daily/HEAD/201710202210Z/evbarm-earmv7hf/binary/gzimg/)
1.58 gdt 95:
1.65 gdt 96: ## Preparing a uSD card
1.10 wiki 97:
1.65 gdt 98: Once you have rpi.img.gz (or rpi_inst), put it on a uSD card using gunzip and dd, for example:
1.14 wiki 99:
1.60 gdt 100: - gunzip rpi.img.gz
1.67 ryoon 101: - dd if=rpi.img of=/dev/disk1
1.14 wiki 102:
1.58 gdt 103: ### Serial Console
104:
105: By default the rpi.img is set to use the HDMI output. If you wish to use a serial console, first mount the FAT32 partition and then
106: edit cmdline.txt and remove '"console=fb"'.
1.14 wiki 107:
1.60 gdt 108: - Most (all?) USB-to-TTL serial adapters only connect Tx, Rx and ground, and do not connect any flow control lines. An effect of missing flow control is that you see console output, but cannot type anything. If so, adjust your serial console application's flow control settings to "none".
1.41 wiki 109:
1.60 gdt 110: In Kermit, the command is "set flow none".
1.41 wiki 111:
1.60 gdt 112: In minicom, run "minicom -s" and set hardware flow control to "no"
1.41 wiki 113:
1.65 gdt 114: ### Enabling ssh
115:
116: If you want to enable ssh with the standard image, so that you can log in over the net without either a serial or HDMI console, mount the ffs partition, place /root/.ssh/authorized_keys, uncomment PermitRootLogin in /etc/ssh/sshd_config, and comment out the rc_configure=NO in /etc/rc.conf. Besides having to find the IP address, you will have to wait for the partition resizing and reboot.
117:
1.58 gdt 118: ### Installation with sshramdisk image
119:
1.65 gdt 120: build.sh (and hence the FTP site) also creates an image 'rpi_inst.img.gz' specifically for installation without HDMI or a serial console. Note that this image is much smaller and that you will need to fetch the sets over the network. To use this method, write that image to a uSD card as above, and then:
1.53 gdt 121:
1.61 gdt 122: - Ensure that you have a lan with a DHCP server.
123: - Connect an Ethernet cable from the RPI to the LAN.
1.19 wiki 124: - After starting DHCP client, SSH login to with user "sysinst", and password "netbsd".
1.17 wiki 125: - Be careful to note the ip address given during DHCP so you don't lose your connection
126: - Also for after the sysinst is done and the system reboots
127: - sysinst started!
1.16 wiki 128:
1.55 gdt 129: ## Installation via ebijun's image
130:
1.58 gdt 131: As an alternative to the standard installation images, Jun Ebihara
132: provides an install image for Raspberry Pi that includes packages. It
133: is based on NetBSD-current and is built for earmv6hf, and thus will
134: work on Raspberry Pi 1, 2 and 3. This image is typically updated
135: every few weeks.
1.55 gdt 136:
1.56 gdt 137: - [https://github.com/ebijun/NetBSD/blob/master/RPI/RPIimage/Image/README](https://github.com/ebijun/NetBSD/blob/master/RPI/RPIimage/Image/README)
1.55 gdt 138:
1.74 gdt 139: # Maintaining a system
140:
1.78 gdt 141: ## vcgencmd
142:
1.80 gdt 143: The program vcgencmd, referenced in the boot section, can be found in pkgsrc/misc/raspberrypi-userland.
1.78 gdt 144:
1.53 gdt 145: ## Updating the kernel
1.46 schmonz 146:
1.42 wiki 147: - Build a new kernel, e.g. using build.sh. It will tell you where the ELF version of the kernel is, e.g.
148:
149: ...
150: Kernels built from RPI2:
151: /Users/feyrer/work/NetBSD/cvs/src-current/obj.evbarm-Darwin-XXX/sys/arch/evbarm/compile/RPI2/netbsd
152: ...
153:
1.69 rin 154: - Besides the "netbsd" kernel in ELF format, there is also a "netbsd.img" (for current) or "netbsd.bin" (for 7 and 8) kernel that is in a format that the Raspberry can boot.
1.48 sevan 155: - Depending on your hardware version, copy this either to /boot/kernel.img (First generation Pi, Pi Zero hardware) or to /boot/kernel7.img (Pi 2, Pi 3 hardware)
1.42 wiki 156: - reboot
157:
1.73 gdt 158: ## Updating the firmware
159:
160: A section below describes the process of updating NetBSD's copy of the firmware from upstream, with testing, by NetBSD developers. This section is about updating a system's firmware from the firmware in a version of NetBSD.
161:
162: TODO: Explain where the firmware is in the source tree, and if it is in the installed system image (such as /usr/mdec). Explain any particular cautions.
163:
1.75 gdt 164: ## Booting
165:
1.79 gdt 166: The device boots by finding a file "bootcode.bin". The primary location is a FAT32 partition on the uSD card, and an additional location is on a USB drive. See the [upstream documentation on booting](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/) and read all the subpages.
1.75 gdt 167:
168: The standard approach is to use a uSD card, with a fdisk partition table containing a FAT32 partition marked active, and a NetBSD partition. The NetBSD partition will then contain a disklabel, pointing to an FFS partition (a), a swap paritiion (b) and the FAT32 boot partition mounted as /boot (e). The file /boot/cmdline.txt has a line to set the root partition.
169:
1.77 gdt 170: One wrinkle in the standard approach is that the disk layout is "boot swap /", but the NetBSD fdisk partition starts at the location of /. The / partition can hold a disklabel, while swap cannot. It is normal to have swap after / (and thus within the fdisk partition), but the arrangement used permits growing / on first boot, for the typical case where a larger uSD is used, compared to the minimum image size.
1.75 gdt 171:
1.77 gdt 172: An alternate approach is to have the boot FAT32 partition as above, but to have the entire system including root on an external disk. This is configured by changing root=ld0a to root=sd0a or root=dk0 (depending on disklabel/GPT). Besides greater space, part of the point is to avoid writing to the uSD card.
1.75 gdt 173:
1.80 gdt 174: A third approach, workable on the Pi 3 only, is to configure USB host booting (already enableed on the 3+; see the upstream documentation) and have the boot partition also on the external device. In this case the external device must have an MBR because the hardware's first-stage boot does not have GPT support. In theory the [procedure to program USB host boot mode](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/msd.md) will function on a NetBSD system because the programming is done by bootcode.bin.
175: \todo Confirm that putting program_usb_boot_mode=1 in config.txt and booting works to program the OTP bit. Confirm that one can then boot NetBSD from external USB.
1.75 gdt 176:
177: \todo Explain USB enumeration and how to ensure that the correct boot and root devices are found if one has e.g. a small SSD for the system and a big disk.
178:
1.24 wiki 179: # Wireless Networking
1.53 gdt 180:
1.75 gdt 181: Note that the built-in WiFi in the RPI3 is not yet supported. USB WiFi interfaces (that work on NetBSD in general) should all work.
1.53 gdt 182:
1.24 wiki 183: - A Realtek 802.11n USB adaptor configures as urtwn(4).
1.25 wiki 184: - Configure with wpa_supplicant in /etc/rc.conf -
1.24 wiki 185:
186: ifconfig_urtwn0=dhcp
187: dhcpcd=YES
188: dhcpcd_flags="-q -b"
189: wpa_supplicant=YES
190: wpa_supplicant_flags="-B -i urtwn0 -c /etc/wpa_supplicant.conf"
1.25 wiki 191: - A sample wpa_supplicant.conf can be found at /usr/share/examples/wpa_supplicant/wpa_supplicant.conf
1.24 wiki 192:
1.27 wiki 193: # GPU
194:
195: ## Video playback
1.29 wiki 196: Accelerated video playback is supported in NetBSD 7 with the [OMXPlayer](http://pkgsrc.se/multimedia/omxplayer) application and through GStreamer with the [omx](http://pkgsrc.se/multimedia/gst-plugins1-omx) plugin.
1.27 wiki 197:
198: ## OpenGL ES
199: Accelerated OpenGL ES is supported in NetBSD 7. The GL ES client libraries are included with the [misc/raspberrypi-userland](http://pkgsrc.se/misc/raspberrypi-userland) package.
200:
1.28 wiki 201: ## Quake 3
1.27 wiki 202: A Raspberry Pi optimized build of *ioquake3* is available in the [games/ioquake3-raspberrypi](http://pkgsrc.se/games/ioquake3-raspberrypi) package. To use it, the following additional resources are required:
203:
204: - pak0.pk3 from Quake 3 CD
1.31 snj 205: - additional pak files from the [games/ioquake3-pk3](http://pkgsrc.se/games/ioquake3-pk3) package
1.27 wiki 206: - read/write permissions on /dev/vchiq and /dev/wsmouse
207:
1.31 snj 208: Place the pak0.pk3 file in the /usr/pkg/lib/ioquake3/baseq3 directory.
1.27 wiki 209:
1.32 wiki 210: ## RetroArch / Libretro
211: Using [emulators/retroarch](http://pkgsrc.se/emulators/retroarch) it is possible to run many emulators at full speed the Raspberry Pi. Emulator cores for various gaming consoles are available in the [emulators/libretro-*](http://pkgsrc.se/search.php?so=libretro-) packages. To begin using retroarch:
212:
213: - Install [emulators/retroarch](http://pkgsrc.se/emulators/retroarch)
214: - Install the libretro core for the system you would like to emulate (lets take [emulators/libretro-gambatte](http://pkgsrc.se/emulators/libretro-gambatte), a GameBoy Color emulator, as an example).
215: - Plug in a USB HID compatible Gamepad, such as the Logitech F710 in "DirectInput" mode (set "D/X" switch to "D").
216: - Create a config file for your gamepad using *retroarch-joyconfig*.
217: [[!template id=programlisting text="""
1.35 wiki 218: $ retroarch-joyconfig -o gamepad.cfg
1.32 wiki 219: """]]
220: - Launch the emulator from the command-line (no X required):
221: [[!template id=programlisting text="""
222: $ retroarch --appendconfig gamepad.cfg -L /usr/pkg/lib/libretro/gambatte_libretro.so game.gbc
223: """]]
224:
1.53 gdt 225: # Developer notes
1.50 gdt 226:
1.53 gdt 227: These notes are for people working on improvements to RPI support in NetBSD.
1.50 gdt 228:
1.72 gdt 229: ## Updating the firmware version in the NetBSD sources
1.50 gdt 230:
1.72 gdt 231: (Note that trying new firmware may result in a non-bootable system, so
232: be prepared to recover the bootable media with another system.)
1.50 gdt 233:
1.72 gdt 234: Upstream firmware releases are
235: [on GitHub](https://github.com/raspberrypi/firmware/releases).
236: Copy all files except `kernel*.img` into `/boot` and reboot.
237:
238: New firmware should pass all of the following tests before being committed to NetBSD.
1.50 gdt 239:
1.53 gdt 240: - Audio
241: - OMXPlayer (and [[!template id=man name="vchiq"]])
242: - Serial/framebuffer console
243: - CPU frequency scaling
1.50 gdt 244:
1.72 gdt 245: Tests shoudl be run on all of `rpi[0123]`.
1.1 jakllsch 246:
CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb