Diff for /wikisrc/ports/evbarm/raspberry_pi.mdwn between versions 1.108 and 1.137

version 1.108, 2018/11/07 00:56:20 version 1.137, 2020/10/16 17:29:39
Line 1 Line 1
 [[!meta title="NetBSD/evbarm on Raspberry Pi"]]  [[!meta title="NetBSD/evbarm on Raspberry Pi"]]
   
 This page attempts to document and coordinate efforts towards NetBSD/evbarm on [Raspberry Pi](http://www.raspberrypi.org).  All [board variants](https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications) are supported.  We use e.g. "RPI2" to refer to "Raspberry Pi 2" to save precious bytes on this page.  This page describes the NetBSD/evbarm port on [Raspberry Pi](http://www.raspberrypi.org) hardware.  All [board variants](https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications) earlier than the RPI4 are believed supported, and specific boards known to work are listed.  We use e.g. "RPI2" to refer to "Raspberry Pi 2" to save precious bytes on this page.  This web page is still 32-bit (aarch32) centric, even though as of mid-2020 aarch64 is also a normal approach.
   
 Initial, limited, Raspberry Pi support was introduced in NetBSD 6.0.  NetBSD 7.0 adds complete support for the board, along with introducing support for the quad-core Raspberry Pi 2 board.  Raspberry Pi 3 support was added for NetBSD 8, and backported to NetBSD 7 in July of 2017.  (This page assumes those using NetBSD 7 are using 7.2 or later, but note that everyone uses 8 or -current.)  Initial, limited, Raspberry Pi support was introduced in NetBSD 6.0.  NetBSD 7.0 added complete support for the board, along with introducing support for the quad-core Raspberry Pi 2 board.  Raspberry Pi 3 support was added for NetBSD 8.  NetBSD 9 supports aarch64, meaning using the newer processors in 64-bit mode (via -current in mid 2018).
   
   Overall, this page takes the view that NetBSD 7 and earlier are obsolete; aside from history, it is written as if those versions don't exist.
   
   The HOWTO is written for what works on formal releases, release branches (e.g. netbsd-9) and NetBSD-current.  It purposefully does not contain instructions about how to get things to work by installing code that is still being tested and not yet in -current.
   
 [[images/raspberrypi.jpg]]  [[images/raspberrypi.jpg]]
   
Line 12  Initial, limited, Raspberry Pi support w Line 16  Initial, limited, Raspberry Pi support w
   
 # What works (and what doesn't yet)  # What works (and what doesn't yet)
   
 ## NetBSD 7 and NetBSD 8  "Works" is primarily relative to the earmv6hf-el and earmv7hf-el CPU targets (32-bit).
   
   ## NetBSD 8
   
  - RPI1, RPI2, RPI2-1.2, RPI3, RPI3+ (except RPI3 builtin WiFi and bluetooth)   - RPI1, RPI2, RPI2-1.2, RPI3, RPI3+ (except RPI3 builtin WiFi and bluetooth)
  - RPI0 and RPI0W are expected to work (without WiFi, and one needs fdt files \todo where from?)   - RPI0 and RPI0W are expected to work (without WiFi, and one needs fdt files \todo where from?)
Line 31  Initial, limited, Raspberry Pi support w Line 37  Initial, limited, Raspberry Pi support w
  - I²C: works, could use enhancements, man page   - I²C: works, could use enhancements, man page
  - SPI: could use enhancements, man page   - SPI: could use enhancements, man page
   
   ## NetBSD 9
   
    - aarch64 support (RPI3, and should work on all supported systems with 64-bit CPUs)
    - RPI3 new SD host controller driver
   
 ## NetBSD current  ## NetBSD current
   
  - RPI3+   
  - RPI3 builtin bluetooth   - RPI3 builtin bluetooth
  - RPI3 new SD host controller driver  
   ## (maybe) NetBSD current, with manual steps
   
      These items do not work in the sense that they simply function after a standard install.  Being listed here implies only that there has been list traffic that implies that after taking a bunch of steps (e.g. new firmware, new dtbs, enabling drivers, applying patches), one can end up with the feature working.  The HOWTO explicitly refrains from describing these steps because they are ephemeral.  However, the fact that list traffic indicates success is possible is a clue that proper support is on the horizon, and that is notable.
   
    - RPI3 and RPI0W builtin WiFi
    - RPI4
   
 ## What needs documenting if it works  ## What needs documenting if it works
   
    - (Everything listed in the previous section.)
  - CM1   - CM1
  - CM3   - CM3
  - CM3lite   - CM3lite
Line 46  Initial, limited, Raspberry Pi support w Line 63  Initial, limited, Raspberry Pi support w
 ## What needs work  ## What needs work
   
  - USB (host); isochronous transfers.   - USB (host); isochronous transfers.
  - RPI3, RPI0W builtin WiFi  
  - RPI0W Bluetooth Low Energy (probably)   - RPI0W Bluetooth Low Energy (probably)
   
 # CPU types  # CPU types
   
  - RPI1 uses "earmv6hf".   - RPI1 uses "earmv6hf".
  - RPI0 uses "\todo".   - RPI0 uses "earmv6hf".
    - RPI0W uses "earmv6hf".
  - RPI2 uses "earmv7hf".   - RPI2 uses "earmv7hf".
  - RPI3 uses "earmv7hf".   - RPI2-1.2 uses "earmv7hf" or "aarch64" (armv8 CPU hardware)
  - RPI0W uses "\todo".   - RPI3 uses "earmv7hf" or "aarch64" (armv8 CPU hardware)
    - RPI4 \todo
   
 Note that one can run a build of earmv6hf on the 2 and 3.  There will still be a kernel7, built to use the 2/3 hardware, but with the armv6 instruction set.  Note that one can run a build of earmv6hf on the 2 and 3.  There will still be a kernel7, built to use the 2/3 hardware, but with the armv6 instruction set.
   
 In theory the code compiled for earmv7hf will be faster, but anecdotal experience is that it doesn't matter that much.  In theory the code compiled for earmv7hf will be faster, but anecdotal experience is that it doesn't matter that much.  \todo Post a link to a quality benchmark.
   
 While the evbarm port has "eb" variants (for big-endian mode), the RPI systems do not support eb and these variants will not work.  Systems built with older CPU architectures (earm, earmv4, earmv5) are not expected to work on RPI.  While the evbarm port has "eb" variants (for big-endian mode), the RPI systems do not support eb and these variants will not work.  Systems built for older CPU architectures (earm, earmv4, earmv5) are not expected to work on RPI.
   
 See also [[NetBSD/aarch64|aarch64]] for running the RPI2-1.2 and RPI3/RPI3+ in 64-bit mode.  The RPI2-1.2, RPI3 and RPI4 have an armv8 CPU that supports aarch64 (64-bit mode) in addition to aarch32 (regular 32-bit ARM).  This is supported, from 9 onwards, by the "aarch64" MACHINE_ARCH of evbarm, also available in build.sh via the alias evbarm64.  This is also referred to as [[NetBSD/aarch64|aarch64]].
   
 # Installation  # Installation
   
Line 72  See also [[NetBSD/aarch64|aarch64]] for  Line 90  See also [[NetBSD/aarch64|aarch64]] for 
 The Raspberry Pi looks for firmware and kernel.img on the first FAT32 MBR partition of the uSD card.  A separate kernel (kernel7.img) is used on RPI2 and RPI3.  The Raspberry Pi looks for firmware and kernel.img on the first FAT32 MBR partition of the uSD card.  A separate kernel (kernel7.img) is used on RPI2 and RPI3.
 The NetBSD kernel will then find NetBSD MBR partition and within that the root disklabel partition, and use that FFS partition as the root filesystem.  The NetBSD kernel will then find NetBSD MBR partition and within that the root disklabel partition, and use that FFS partition as the root filesystem.
   
 A 2 GB card is the smallest workable size, and the installation image will fit.  After the first boot, the system resizes the NetBSD root partition to fill the card.  Note that swap is after /boot and before /, and not contained in the NetBSD fdisk partition.  However, if you don't try to change the partition structure, this should not cause you any trouble.  A 2 GB card is the smallest workable size that the installation image will fit on.  After the first boot, the system resizes the NetBSD root partition to fill the card.  Note that swap is after /boot and before /, and not contained in the NetBSD fdisk partition.  However, if you don't try to change the partition structure, this should not cause you any trouble.
   
 Note that SD cards generally have limited write tolerance, so you may wish to disable atime updates via the noatime option, as is done by the default installation.  Note that SD cards generally have limited write tolerance, so you may wish to disable atime updates via the noatime option, as is done by the default installation.
   
 ## Choosing a version  ## Choosing a version
   
 First, decide if you want to install a formal release (7.2 or 8.0), a stable branch build (netbsd-7, netbsd-8), or NetBSD-current.  For people who don't know how to choose among those, a recent build of netbsd-8 is probably best, with 8.0 the choice for those who value being at exactly a formal release.  First, decide if you want to install a formal release (8.0 or 9.0), a stable branch build (netbsd-8, netbsd-9), or NetBSD-current.  For people who don't know how to choose among those, a recent build of netbsd-9 is probably best, with 9.0 the choice for those who value being at exactly a formal release.
   
 See also "ebijun's image", below, which is NetBSD-current and includes packages.  See also "ebijun's image", below, which is NetBSD-current and includes packages.
   
Line 98  Consider setting RELEASEMACHINEDIR if yo Line 116  Consider setting RELEASEMACHINEDIR if yo
   
 ### NetBSD autobuild HTTPS/FTP servers  ### NetBSD autobuild HTTPS/FTP servers
   
 NetBSD provides nightly builds on [nyftp.netbsd.org](https://nyftp.netbsd.org/pub/NetBSD-daily/).  The next directory level is the branch being built (netbsd-7, netbsd-8, HEAD, and more), plus optionally things like compiler type.  It is followed by date/time, e.g. "HEAD/201811051650Z"; once a build is complete the symlink "latest" is adjusted to point to it.  The next level is "${MACHINE}-${MACHINE_ARCH}", e.g. "evbarm-earmv7hf", and multiple combinations are provided.  NetBSD provides nightly builds on [nycdn.netbsd.org](https://nycdn.netbsd.org/pub/NetBSD-daily/).  The next directory level is the branch being built (netbsd-8, netbsd-9, HEAD, and more), plus optionally things like compiler type.  It is followed by date/time, e.g. "HEAD/201811051650Z"; once a build is complete the symlink "latest" is adjusted to point to it.  The next level is "${MACHINE}-${MACHINE_ARCH}", e.g. "evbarm-earmv7hf", and multiple combinations are provided.
   
 An example URL, arguably the standard approach for first-time NetBSD/RPI users, is https://nyftp.netbsd.org/pub/NetBSD-daily/netbsd-8/latest/evbarm-earmv7hf/binary/gzimg/  An example URL, arguably the standard approach for first-time NetBSD/RPI users, is <https://nycdn.netbsd.org/pub/NetBSD-daily/netbsd-8/latest/evbarm-earmv7hf/binary/gzimg/>
   
 ### release layout  ### release layout
   
Line 126  The standard approach is to use a USB ke Line 144  The standard approach is to use a USB ke
   
 By default the rpi.img is set to use the HDMI output.  If you wish to use a serial console, mount the FAT32 partition on another system and edit cmdline.txt and remove '"console=fb"'.  By default the rpi.img is set to use the HDMI output.  If you wish to use a serial console, mount the FAT32 partition on another system and edit cmdline.txt and remove '"console=fb"'.
   
  - Most (all?) USB-to-TTL serial adapters have wires for Tx, Rx and ground, and not RTS/CTS or other flow control lines.   Thus, your terminal program (or terminal) must be configured to not require flow control; a symptom of misconfiguration is that you see console output, but cannot type anything.  If so, adjust your serial console application's flow control settings to "none".   - Most (all?) USB-to-TTL serial adapters have wires for TX, RX and ground, and not RTS/CTS or other flow control lines.   Thus, your terminal program (or terminal) must be configured to not require flow control; a symptom of misconfiguration is that you see console output, but cannot type anything.  If so, adjust your serial console application's flow control settings to "none".   The serial port is at 115200 baud.
   
    - In Kermit, the command is "set flow none".     - In Kermit, the commands are "set flow none", "set carrier-watch off", "set baud 115200", and, often on NetBSD, "set line /dev/dtyU0".
    - In minicom, run "minicom -s" and set hardware flow control to "no".     - In minicom, run "minicom -s" and set hardware flow control to "no".
   
 ### Enabling ssh for installation without any console  ### Enabling ssh for installation without any console
Line 141  build.sh (and hence the FTP site) also c Line 159  build.sh (and hence the FTP site) also c
   
  - Connect an Ethernet cable from the RPI to a LAN with a DHCP server, and another host you can use for ssh.   - Connect an Ethernet cable from the RPI to a LAN with a DHCP server, and another host you can use for ssh.
  - Power on the RPI, and wait.  Watch the logs on the DHCP server, and find the IP address assigned to the RPI.   - Power on the RPI, and wait.  Watch the logs on the DHCP server, and find the IP address assigned to the RPI.
  - Use ssh to login to the address you found with user "sysinst", and password "netbsd".   - Use ssh to log in to the address you found with user "sysinst", and password "netbsd".
  - When installing, ensure that you enable DHCP and ssh, so that you can log in again after the system is installed.   - When installing, ensure that you enable DHCP and ssh, so that you can log in again after the system is installed.
   
 The rpi_inst.img.gz image will only work for systems that use earmv6hf kernels (so not RPI2/3).  See [this port-arm message](https://mail-index.netbsd.org/port-arm/2017/08/18/msg004374.html) for details.  The rpi_inst.img.gz image will only work for systems that use earmv6hf kernels (so not RPI2/3).  See [this port-arm message](https://mail-index.netbsd.org/port-arm/2017/08/18/msg004374.html) for details.
Line 154  is based on NetBSD-current and is built  Line 172  is based on NetBSD-current and is built 
 work on Raspberry Pi 1, 2 and 3.  This image is typically updated  work on Raspberry Pi 1, 2 and 3.  This image is typically updated
 every few weeks.  every few weeks.
   
  - [https://github.com/ebijun/NetBSD/blob/master/RPI/RPIimage/Image/README](https://github.com/ebijun/NetBSD/blob/master/RPI/RPIimage/Image/README)   - <https://github.com/ebijun/NetBSD/blob/master/RPI/RPIimage/Image/README>
   
   ## Boot Process
   
   https://www.raspberrypi.org/documentation/configuration/config-txt/boot.md
   
   Note that generally, a single dtb is loaded.  On NetBSD 9, the dtb
   file for the system is loaded by the bootloader (in flash).
   
 ## Configuring 802.11  ## Configuring 802.11
   
Line 168  Note that the built-in WiFi in the RPI3  Line 193  Note that the built-in WiFi in the RPI3 
   
 The following pages have been published by NetBSD community members.  (Note that some of them are old.)  The following pages have been published by NetBSD community members.  (Note that some of them are old.)
   
  - https://www.cambus.net/netbsd-on-the-raspberry-pi/   - <https://www.cambus.net/netbsd-on-the-raspberry-pi/>
   
 # Maintaining a system  # Maintaining a system
   
   ## Booting single user
   
   \todo Describe how to boot single user via the serial console and via the fb console.
   
 ## vcgencmd  ## vcgencmd
   
 The program vcgencmd, referenced in the boot section,  can be found in pkgsrc/misc/raspberrypi-userland.  The program vcgencmd, referenced in the boot section,  can be found in pkgsrc/misc/raspberrypi-userland.
   
 ## Updating the kernel  ## Updating the kernel
   
  - Build a new kernel, e.g. using build.sh. It will tell you where the ELF version of the kernel is, e.g.   - Run uname -a to determine the name of the config of your current kernel.  For NetBSD <= 8, one ran RPI or RPI2.  For NetBSD >=9, one uses GENERIC.
    - Build a new kernel, e.g. using build.sh. Ideally, run "build.sh release" and look in releasedir/binary/kernels.  If building just a kernel, it will tell you where the ELF version of the kernel is, e.g.
          ...           ...
          Kernels built from RPI2:           Kernels built from GENERIC:
           /Users/feyrer/work/NetBSD/cvs/src-current/obj.evbarm-Darwin-XXX/sys/arch/evbarm/compile/RPI2/netbsd            /Users/feyrer/work/NetBSD/cvs/src-current/obj.evbarm-Darwin-XXX/sys/arch/evbarm/compile/GENERIC/netbsd
          ...           ...
    - There are multiple kernel formats produced by a release build, for use with different boot loader schemes..  For GENERIC:
  - Besides the "netbsd" kernel in ELF format, there is also a "netbsd.img" (for current) or "netbsd.bin" (for 7 and 8) kernel that is in a format that the Raspberry can boot.     - netbsd-GENERIC: A normal kernel in ELF format.
      - netbsd-GENERIC.img: In NetBSD >= 9, formatted for the RPI bootloader.
      - netbsd-GENERIC.bin: In NetBSD <= 8, formatted for the RPI bootloader.  In NetBSD >= 9, ??????  In NetBSD 9, this kernel WILL NOT boot.
      - netbsd-GENERIC.ub: A kernel in uboot format.
  - Depending on your hardware version, copy this either to /boot/kernel.img (First generation Pi, Pi Zero hardware) or to /boot/kernel7.img (Pi 2, Pi 3 hardware)   - Depending on your hardware version, copy this either to /boot/kernel.img (First generation Pi, Pi Zero hardware) or to /boot/kernel7.img (Pi 2, Pi 3 hardware)
  - reboot   - reboot
   
   \todo Explain if updating firmware is necessary when e.g. moving from 8 to 9, or 9 to current.
   
   ## Updating dtb files
   
   ### NetBSD 8
   
   On NetBSD 8, dtb files are not used. (\todo Really?)
   
   ### NetBSD 9
   
   (This is harder than it should be.)
   Build a release.  gunzip the armv7.img, vnconfig it, and mount the MSDOS partition (e) e.g. on /mnt.  Copy the dtb files from /mnt/foo.dtb to /boot, and from /mnt/dtb/foo.dtb to /boot/dtb.
   
   It seems that some systems, including RPI, require dtb files in /boot, and some expect them in /boot/dtb.
   
   \todo Explain if you only really need the right one for your system type.
   
   \todo Explain how one is supposed to be able to update these from the dtb files in releasedir/binary/kernel, or fix it to have the same structure.
   
   ### NetBSD current
   
   When updating, ensure that /boot is mounted and that you unpack the dtb set.
   
 ## Updating the firmware  ## Updating the firmware
   
   It is highly likely that running NetBSD from a given branch X with firmware from a branch Y < X will not go well.  It is unclear if firmware from a branch Y > X will work.  It is standard practice to use firmware from the right branch.
   
 A section below describes the process of updating NetBSD's copy of the firmware from upstream, with testing, by NetBSD developers.  This section is about updating a system's firmware from the firmware in a version of NetBSD.  A section below describes the process of updating NetBSD's copy of the firmware from upstream, with testing, by NetBSD developers.  This section is about updating a system's firmware from the firmware in a version of NetBSD.
   
 \todo Explain where the firmware is in the source tree, and if it is in the installed system image (such as /usr/mdec).  Explain how to update a system (presumably /boot) from either an installed system's new firmware files, or the source tree.  Explain any particular cautions.  (Updating the firmware is harder than it should be.)
   Build a release.  gunzip the armv7.img, vnconfig it, and mount the MSDOS partition (e) e.g. on /mnt.  Copy files from that to /boot that have changes, carefully.
   
 Probably, for the RPI3+, one needs to use -current, or use -8 with firmware from -current.  \todo Defuzz.  Relevant files include bootcode.bin, start.elf and start_cd.elf.
   
   Compare cmdline.txt, but beware that just overwriting it will lose customizations like using the serial console instead of the framebuffer.
   
   \todo Explain where the firmware is in the source tree, and note that it is not in the installed system image (such as /usr/mdec).  Explain how to update a system (presumably /boot) from either an installed system's new firmware files, or the source tree.  Explain any particular cautions.
   
 \todo Explain if using updated firmware from one branch (e.g. netbsd-current) on a system using a different branch (e.g. netbsd-8) is safe.  Explain if pullups are done to release branches with new firmware.  \todo Explain if using updated firmware from one branch (e.g. netbsd-current) on a system using a different branch (e.g. netbsd-8) is safe.  Explain if pullups are done to release branches with new firmware.
   
Line 203  Probably, for the RPI3+, one needs to us Line 265  Probably, for the RPI3+, one needs to us
   
 The device boots by finding a file "bootcode.bin".   The primary location is a FAT32 partition on the uSD card, and an additional location is on a USB drive.  See the [upstream documentation on booting](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/) and read all the subpages.  The device boots by finding a file "bootcode.bin".   The primary location is a FAT32 partition on the uSD card, and an additional location is on a USB drive.  See the [upstream documentation on booting](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/) and read all the subpages.
   
 The standard approach is to use a uSD card, with a fdisk partition table containing a FAT32 partition marked active, and a NetBSD partition.  The NetBSD partition will then contain a disklabel, pointing to an FFS partition (a), a swap paritiion (b) and the FAT32 boot partition mounted as /boot (e).  The file /boot/cmdline.txt has a line to set the root partition.  The standard approach is to use a uSD card, with a fdisk partition table containing a FAT32 partition marked active, and a NetBSD partition.  The NetBSD partition will then contain a disklabel, pointing to an FFS partition (a), a swap partition (b) and the FAT32 boot partition mounted as /boot (e).  The file /boot/cmdline.txt has a line to set the root partition.
   
 One wrinkle in the standard approach is that the disk layout is "boot swap /", but the NetBSD fdisk partition starts at the location of /.   The / partition can hold a disklabel, while swap cannot.   It is normal to have swap after / (and thus within the fdisk partition), but the arrangement used permits growing / on first boot, for the typical case where a larger uSD is used, compared to the minimum image size.  One wrinkle in the standard approach is that the disk layout is "boot swap /", but the NetBSD fdisk partition starts at the location of /, so the swap partition is not within the NetBSD fdisk partition.  The / partition can hold a disklabel, while swap cannot.   It is normal to have swap after / (and thus within the fdisk partition), but the arrangement used permits growing / on first boot, for the typical case where a larger uSD is used, compared to the minimum image size.
   
 An alternate approach is to have the boot FAT32 partition as above, but to have the entire system including root on an external disk.  This is configured by changing root=ld0a to root=sd0a or root=dk0 (depending on disklabel/GPT).  Besides greater space, part of the point is to avoid writing to the uSD card.  An alternate approach is to have the boot FAT32 partition as above, but to have the entire system including root on an external disk.  This is configured by changing root=ld0a to root=sd0a or root=dk0 (depending on disklabel/GPT).  Besides greater space, part of the point is to avoid writing to the uSD card.
   
 A third approach, workable on the Pi 3 only, is to configure USB host booting (already enableed on the 3+; see the upstream documentation) and have the boot partition also on the external device.  In this case the external device must have an MBR because the hardware's first-stage boot does not have GPT support. In theory the [procedure to program USB host boot mode](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/msd.md) will function on a NetBSD system because the programming is done by bootcode.bin.  A third approach, workable on the Pi 3 only, is to configure USB host booting (already enabled on the 3+; see the upstream documentation) and have the boot partition also on the external device.  In this case the external device must have an MBR because the hardware's first-stage boot does not have GPT support. In theory the [procedure to program USB host boot mode](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/msd.md) will function on a NetBSD system because the programming is done by bootcode.bin.
 \todo Confirm that putting program_usb_boot_mode=1 in config.txt and booting works to program the OTP bit.  Confirm that one can then boot NetBSD from external USB.  \todo Confirm that putting program_usb_boot_mode=1 in config.txt and booting works to program the OTP bit.  Confirm that one can then boot NetBSD from external USB.
   
 There is no well-defined USB enumeration order, so the preferred approach if one has multiple USB mass storage devices is to use named wedges in both fstab and cmdline.txt.  There is no well-defined USB enumeration order, so the preferred approach if one has multiple USB mass storage devices is to use named wedges in both fstab and cmdline.txt.
   
   ## Split-mode aarch32/aarch64
   
   \todo Verify this, and add any necessary cautions about boot code.
   
   The aarch64 kernel can run aarch32 binaries, so one can boot an aarch64 kernel on a system with an aarch32 userland.
   
 # X11 and GPU  # X11 and GPU
   
 ## Video playback  ## Video playback
 Accelerated video playback is supported in NetBSD 7 with the [OMXPlayer](http://pkgsrc.se/multimedia/omxplayer) application and through GStreamer with the [omx](http://pkgsrc.se/multimedia/gst-plugins1-omx) plugin.  
   Accelerated video playback is supported with the [OMXPlayer](http://pkgsrc.se/multimedia/omxplayer) application and through GStreamer with the [omx](http://pkgsrc.se/multimedia/gst-plugins1-omx) plugin.
   
 ## OpenGL ES  ## OpenGL ES
 Accelerated OpenGL ES is supported in NetBSD 7. The GL ES client libraries are included with the [misc/raspberrypi-userland](http://pkgsrc.se/misc/raspberrypi-userland) package.  
   Accelerated OpenGL ES is supported.  The GL ES client libraries are included with the [misc/raspberrypi-userland](http://pkgsrc.se/misc/raspberrypi-userland) package.
   
 ## Quake 3  ## Quake 3
   
 A Raspberry Pi optimized build of *ioquake3* is available in the [games/ioquake3-raspberrypi](http://pkgsrc.se/games/ioquake3-raspberrypi) package. To use it, the following additional resources are required:  A Raspberry Pi optimized build of *ioquake3* is available in the [games/ioquake3-raspberrypi](http://pkgsrc.se/games/ioquake3-raspberrypi) package. To use it, the following additional resources are required:
   
  - pak0.pk3 from Quake 3 CD   - pak0.pk3 from Quake 3 CD
Line 232  A Raspberry Pi optimized build of *ioqua Line 303  A Raspberry Pi optimized build of *ioqua
 Place the pak0.pk3 file in the /usr/pkg/lib/ioquake3/baseq3 directory.  Place the pak0.pk3 file in the /usr/pkg/lib/ioquake3/baseq3 directory.
   
 ## RetroArch / Libretro  ## RetroArch / Libretro
   
 Using [emulators/retroarch](http://pkgsrc.se/emulators/retroarch) it is possible to run many emulators at full speed the Raspberry Pi. Emulator cores for various gaming consoles are available in the [emulators/libretro-*](http://pkgsrc.se/search.php?so=libretro-) packages. To begin using retroarch:  Using [emulators/retroarch](http://pkgsrc.se/emulators/retroarch) it is possible to run many emulators at full speed the Raspberry Pi. Emulator cores for various gaming consoles are available in the [emulators/libretro-*](http://pkgsrc.se/search.php?so=libretro-) packages. To begin using retroarch:
   
  - Install [emulators/retroarch](http://pkgsrc.se/emulators/retroarch)   - Install [emulators/retroarch](http://pkgsrc.se/emulators/retroarch)
  - Install the libretro core for the system you would like to emulate (lets take [emulators/libretro-gambatte](http://pkgsrc.se/emulators/libretro-gambatte), a GameBoy Color emulator, as an example).   - Install the libretro core for the system you would like to emulate (lets take [emulators/libretro-gambatte](http://pkgsrc.se/emulators/libretro-gambatte), a GameBoy Color emulator, as an example).
  - Plug in a USB HID compatible Gamepad, such as the Logitech F710 in "DirectInput" mode (set "D/X" switch to "D").   - Make sure your user has read and write permissions on `/dev/vchiq`.
  - Create a config file for your gamepad using *retroarch-joyconfig*.   - Plug in a USB HID compatible Gamepad, such as the Logitech F710 in "DirectInput" mode (set "D/X" switch to "D"). Note that since the framebuffer GL driver will not allow for keyboard input in RetroArch, you will have to copy your joypad configuration from another system.
 [[!template  id=programlisting text="""   - Configure retroarch by editing $HOME/.config/retroarch/retroarch.cfg:
 $ retroarch-joyconfig -o gamepad.cfg          video_driver = "gl"
 """]]          input_driver = "null"
  - Launch the emulator from the command-line (no X required):          joypad_driver = "sdl2"
 [[!template  id=programlisting text="""          menu_driver = "rgui"
 $ retroarch --appendconfig gamepad.cfg -L /usr/pkg/lib/libretro/gambatte_libretro.so game.gbc  
 """]]  
   
 # Developer notes  # Developer notes
   
Line 270  Tests should be run on all of `rpi[0123] Line 340  Tests should be run on all of `rpi[0123]
   
 ## Testing with anita and qemu  ## Testing with anita and qemu
   
 anita has support for evbarm.  Install qemu and dtb-arm-vexpress from pkgsrc.  Note that the release subdirectory should be evbarm-earmv6hf or evbarm-earmv7hf.  See the anita section in the evbarm page.
   
   It is not currently known how to emulate a RPI in qemu, and therefore anita does not yet have support for this.  \todo Add a command-line example to run qemu emulating some RPI model.
   
   # Misc notes
   
   Miscellaneous notes about Raspberry PI.
   
   ## Power supply needed (or: why there is a little rainbow square in the top-right corner?)
   
   Raspberry Pi devices are powered by 5V micro USB and a 2.5A (2500mA)
   power supply is recommended.  For more information please read:
   
    <https://www.raspberrypi.org/documentation/faqs/#pi-power>
   
   Power glitches can also manifest in other ways, e.g. with an USB
   disk plugged:
   
   [[!template id=programlisting text="""
   sd0(umass0:0:0:0): generic HBA error
   sd0: cache synchronization failed
   """]]
   
   Using a recommended power supply avoid such issues.
   
 \todo It is not currently known and documented how to configure qemu and anita to emulate a RPI in general or a specific RPI model.  ## Xenon death flash (Raspberry Pi 2 is camera-shy)
   
 \todo Explain about how DTB works.  When using laser pointers or xenon flashes in cameras (or other
   flashes of high-intensity long-wave light) against a Raspberry Pi
   2 the Pi can power itself off.
   For more information please read:
   
 \todo Give a command line example to run qemu (without anita).   <https://www.raspberrypi.org/blog/xenon-death-flash-a-free-physics-lesson/>

Removed from v.1.108  
changed lines
  Added in v.1.137


CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb