Diff for /wikisrc/ports/evbarm/raspberry_pi.mdwn between versions 1.71 and 1.132

version 1.71, 2018/10/30 01:33:39 version 1.132, 2020/10/15 19:44:53
Line 1 Line 1
 [[!meta title="NetBSD/evbarm on Raspberry Pi"]]  [[!meta title="NetBSD/evbarm on Raspberry Pi"]]
   
 This page attempts to document and coordinate efforts towards NetBSD/evbarm on [Raspberry Pi](http://www.raspberrypi.org). All board variants are supported.  This page describes the NetBSD/evbarm port on [Raspberry Pi](http://www.raspberrypi.org) hardware.  All [board variants](https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications) earlier than the RPI4 are believed supported, and specific boards known to work are listed.  We use e.g. "RPI2" to refer to "Raspberry Pi 2" to save precious bytes on this page.  This web page is still 32-bit (aarch32) centric, even though as of mid-2020 aarch64 is also a normal approach.
   
 Initial, limited, Raspberry Pi support was introduced in NetBSD 6.0. NetBSD 7.0 adds complete support for the board, along with introducing support for the quad-core Raspberry Pi 2 board.  Raspberry Pi 3 support was added for NetBSD 8, and backported to NetBSD 7 in July of 2017.  (This page assumes those using NetBSD 7 are using 7.2, or the netbsd-7 branch after mid 2018.)  Initial, limited, Raspberry Pi support was introduced in NetBSD 6.0.  NetBSD 7.0 added complete support for the board, along with introducing support for the quad-core Raspberry Pi 2 board.  Raspberry Pi 3 support was added for NetBSD 8.  NetBSD 9 supports aarch64, meaning using the newer processors in 64-bit mode (via -current in mid 2018).
   
   Overall, this page takes the view that NetBSD 7 and earlier are obsolete; aside from history, it is written as if those versions don't exist.
   
   The HOWTO is written for what works on formal releases, release branches (e.g. netbsd-9) and NetBSD-current.  It purposefully does not contain instructions about how to get things to work by installing code that is still being tested and not yet in -current.
   
 [[images/raspberrypi.jpg]]  [[images/raspberrypi.jpg]]
   
Line 12  Initial, limited, Raspberry Pi support w Line 16  Initial, limited, Raspberry Pi support w
   
 # What works (and what doesn't yet)  # What works (and what doesn't yet)
   
 ## NetBSD 7 and NetBSD 8  "Works" is primarily relative to the earmv6hf-el and earmv7hf-el CPU targets (32-bit).
   
   ## NetBSD 8
   
  - RaspberryPi 1, and 2 (including SMP)   - RPI1, RPI2, RPI2-1.2, RPI3, RPI3+ (except RPI3 builtin WiFi and bluetooth)
  - Raspberry Pi 3 (excluding WiFi and bluetooth)   - RPI0 and RPI0W are expected to work (without WiFi, and one needs fdt files \todo where from?)
  - multi-user boot with root on SD card   - multiple processors on RPI2/RPI3
    - boots normally to multiuser, with FAT32 boot partition on uSD
    - root filesystem can be uSD or USB-attached mass storage
  - serial or graphics console (with EDID query / parsing)   - serial or graphics console (with EDID query / parsing)
    - X11 via HDMI
    - GPU (VCHIQ) - 3D and video decode. man page missing.
    - USB host controller - dwctwo(4) and most devices work
    - USB Ethernet - usmsc(4)
  - DMA controller driver and sdhc(4) support   - DMA controller driver and sdhc(4) support
    - RNG
  - Audio: works. man page missing.   - Audio: works. man page missing.
  - I²C: works, could use enhancements, man page  
  - GPIO   - GPIO
  - RNG   - I²C: works, could use enhancements, man page
  - SPI: could use enhancements, man page   - SPI: could use enhancements, man page
  - GPU (VCHIQ) - 3D and video decode. man page missing.  
  - USB (host) - dwctwo(4)  ## NetBSD 9
  - USB Ethernet - usmsc(4)  
  - X windows.   - aarch64 support (RPI3, and should work on all supported systems with 64-bit CPUs)
    - RPI3 new SD host controller driver
   
 ## NetBSD current  ## NetBSD current
   
  - Raspberry Pi 3 bluetooth   - RPI3 builtin bluetooth
  - Raspberry Pi 3 new SD host controller driver  
   ## (maybe) NetBSD current, with manual steps
   
      These items do not work in the sense that they simply function after a standard install.  Being listed here implies only that there has been list traffic that implies that after taking a bunch of steps (e.g. new firmware, new dtbs, enabling drivers, applying patches), one can end up with the feature working.  The HOWTO explicitly refrains from describing these steps because they are ephemeral.  However, the fact that list traffic indicates success is possible is a clue that proper support is on the horizon, and that is notable.
   
    - RPI3 and RPI0W builtin WiFi
   
   ## What needs documenting if it works
   
    - CM1
    - CM3
    - CM3lite
   
 ## What needs work  ## What needs work
   
    - RPI4 (as of 2020-01, still does not work in current)
  - USB (host); isochronous transfers.   - USB (host); isochronous transfers.
  - WiFi   - RPI0W Bluetooth Low Energy (probably)
   
 # CPU types  # CPU types
   
 Note that one can also use code for earlier models on later models.   - RPI1 uses "earmv6hf".
    - RPI0 uses "earmv6hf".
  - Raspberry Pi 1 uses "earmv6hf".   - RPI0W uses "earmv6hf".
  - Raspberry Pi 2 uses "earmv7hf".   - RPI2 uses "earmv7hf".
  - Raspberry Pi 3 uses "earmv7hf".   - RPI2-1.2 uses "earmv7hf" or "aarch64" (armv8 CPU hardware)
    - RPI3 uses "earmv7hf" or "aarch64" (armv8 CPU hardware)
 See also [[NetBSD/aarch64|aarch64]] for running the Pi 2/3 in 64-bit mode.   - RPI4 \todo
   
   Note that one can run a build of earmv6hf on the 2 and 3.  There will still be a kernel7, built to use the 2/3 hardware, but with the armv6 instruction set.
   
   In theory the code compiled for earmv7hf will be faster, but anecdotal experience is that it doesn't matter that much.  \todo Post a link to a quality benchmark.
   
   While the evbarm port has "eb" variants (for big-endian mode), the RPI systems do not support eb and these variants will not work.  Systems built for older CPU architectures (earm, earmv4, earmv5) are not expected to work on RPI.
   
   The RPI2-1.2 and RPI3 have an armv8 CPU that supports aarch64 (64-bit
   mode) in addition to aarch32 (regular 32-bit ARM).  This is supported,
   from 9 onwards, by the "aarch64" MACHINE_ARCH of evbarm, also
   available in build.sh via the alias evbarm64.  This is also
   referred to as [[NetBSD/aarch64|aarch64]].
   
 # Installation  # Installation
   
 ## SD card structure  ## SD card structure
   
 The Raspberry Pi looks for firmware and kernel.img on the first FAT32 partition of the uSD card.  A separate kernel (kernel7.img) is used on RPI2 and RPI3.  The Raspberry Pi looks for firmware and kernel.img on the first FAT32 MBR partition of the uSD card.  A separate kernel (kernel7.img) is used on RPI2 and RPI3.
   The NetBSD kernel will then find NetBSD MBR partition and within that the root disklabel partition, and use that FFS partition as the root filesystem.
   
 The NetBSD kernel will then use the FFS partition as the root filesystem.  A 2 GB card is the smallest workable size that the installation image will fit on.  After the first boot, the system resizes the NetBSD root partition to fill the card.  Note that swap is after /boot and before /, and not contained in the NetBSD fdisk partition.  However, if you don't try to change the partition structure, this should not cause you any trouble.
   
 A 2 GB card is the smallest workable size.  The NetBSD filesystem will be expanded to fit.  Note that SD cards generally have limited write tolerance, so you may wish to disable atime updates via the noatime option, as is done by the default installation.
   
 ## Choosing a version  ## Choosing a version
   
 First, decide if you want to install a formal release (7.2 or 8.0), a stable branch build (netbsd-7, netbsd-8), or NetBSD-current.  For people who don't know how to choose among those, 8.0 or netbsd-8 is probably best.  First, decide if you want to install a formal release (8.0 or 9.0), a stable branch build (netbsd-8, netbsd-9), or NetBSD-current.  For people who don't know how to choose among those, a recent build of netbsd-9 is probably best, with 9.0 the choice for those who value being at exactly a formal release.
   
 See also "ebijun's image", below, which is NetBSD-current and includes packages.  See also "ebijun's image", below, which is NetBSD-current and includes packages.
   
 ## Getting bits to install  ## Getting bits to install
   
 You can either build a release yourself with build.sh, or get one from the NetBSD FTP servers.  You can either build a release yourself with build.sh, or get a release from the NetBSD HTTPS/FTP servers.  The bits from both sources should match, except for things like  timestamps, or because the sources are from slightly different points along branches.
   
 Both will provide rpi.img.gz and rpi_inst.img.gz.  Each is an image to be written to a uSD card, and has a FAT32 partition for booting.  In rpi.img.gz, there is also an FFS partition for NetBSD.  
   
 ### Building yourself  ### Building yourself
   
 Getting sources and building a release with build.sh is not special for evbarm.  Pick a CPU type alias and pass it to build.sh with -m.  Examples (the first two are equivalent):  Getting sources and building a release with build.sh is not special for evbarm.  However, the evbarm port has a very large number of CPU types, compared to i386 and amd64 which have one each.  The standard approach is to use -m to define MACHINE and -a to define MACHINE_ARCH.  build.sh supports aliases that can be passed as a MACHINE value, but denote both MACHINE and a MACHINE_ARCH.   The third line uses an alias and is equal to the second, for RPI2/3.  Note that the aliases start with "evb" while the MACHINE_ARCH values do not, and that aliases have "-el" or "-eb", while the MACHINE_ARCH values have no suffix or "eb".
   
  - ./build.sh -m earmv6hf -u release  
  - ./build.sh -m evbarm -a earmv6hf -u release   - ./build.sh -m evbarm -a earmv6hf -u release
  - ./build.sh -m evbarm -a earmv7hf -u release   - ./build.sh -m evbarm -a earmv7hf -u release
    - ./build.sh -m evbearmv7hf-el -u release
   
   Consider setting RELEASEMACHINEDIR if you wish to build multiple MACHINE_ARCH values for a MACHINE; see build.sh.  Use something like "evbarm-earmv7hf", so that 1) earvm6 and earmv7 don't collide and 2) anita will recognize it as a type of evbarm.
   
   ### NetBSD autobuild HTTPS/FTP servers
   
 ### NetBSD FTP servers  NetBSD provides nightly builds on [nycdn.netbsd.org](https://nycdn.netbsd.org/pub/NetBSD-daily/).  The next directory level is the branch being built (netbsd-8, netbsd-9, HEAD, and more), plus optionally things like compiler type.  It is followed by date/time, e.g. "HEAD/201811051650Z"; once a build is complete the symlink "latest" is adjusted to point to it.  The next level is "${MACHINE}-${MACHINE_ARCH}", e.g. "evbarm-earmv7hf", and multiple combinations are provided.
   
 NetBSD provides nightly builds on [nyftp.netbsd.org](http://nyftp.netbsd.org/pub/NetBSD-daily/).  These are equivalent to building yourself.  An example URL, arguably the standard approach for first-time NetBSD/RPI users, is <https://nycdn.netbsd.org/pub/NetBSD-daily/netbsd-8/latest/evbarm-earmv7hf/binary/gzimg/>
   
  - The 'evbarm-earmv6hf/binary/gzimg/' directory contains an rpi.img file that can be used as a single image for both boards.  ### release layout
  - The 'evbarm-earmv7hf/binary/gzimg/' directory contains an armv7.img file that is optimized for Raspberry Pi 2/3.  
  - The old stable build directory will be under netbsd-7/YYYYMMDDHHMMZ/ (for example, http://nyftp.netbsd.org/pub/NetBSD-daily/netbsd-7/201710201440Z/evbarm-earmv6hf/binary/gzimg)      Once you get to the releasedir, self-built and autobuild releases have the same structure.
  - The stable build directory will be under netbsd-8/YYYYMMDDHHMMZ/ (for example, http://nyftp.netbsd.org/pub/NetBSD-daily/netbsd-8/201710211010Z/evbarm-earmv6hf/binary/gzimg/)  
  - The HEAD/current directory build will be under HEAD/YYYYMMDDHHMMZ/ (for example, http://nyftp.netbsd.org/pub/NetBSD-daily/HEAD/201710202210Z/evbarm-earmv7hf/binary/gzimg/)   - The 'evbarm-earmv6hf/binary/gzimg/' directory contains an rpi.img file that will run on any of the RPI boards.
    - The 'evbarm-earmv7hf/binary/gzimg/' directory contains an armv7.img file that uses the armv7 instruction set, and thus can run only on the RPI2 and RPI3 (and perhaps the CM3).  It also supports systems other than the RPI family.
   
   \todo Explain why there is no armv7_inst.gz.
   
 ## Preparing a uSD card  ## Preparing a uSD card
   
 Once you have rpi.img.gz (or rpi_inst), put it on a uSD card using gunzip and dd, for example:  Once you have rpi.img.gz (or rpi_inst for earmv6 boards), put it on a uSD card using gunzip and dd, for example:
   
  - gunzip rpi.img.gz   - gunzip rpi.img.gz
  - dd if=rpi.img of=/dev/disk1   - dd if=rpi.img of=/dev/disk1
   
 ### Serial Console  ## Console approaches
   
   The standard approach is to use a USB keyboard and an HDMI monitor for installation.
   
 By default the rpi.img is set to use the HDMI output.  If you wish to use a serial console, first mount the FAT32 partition and then  ### Serial Console
 edit cmdline.txt and remove '"console=fb"'.  
   
  - Most (all?) USB-to-TTL serial adapters only connect Tx, Rx and ground, and do not connect any flow control lines. An effect of missing flow control is that you see console output, but cannot type anything. If so, adjust your serial console application's flow control settings to "none".  By default the rpi.img is set to use the HDMI output.  If you wish to use a serial console, mount the FAT32 partition on another system and edit cmdline.txt and remove '"console=fb"'.
   
    In Kermit, the command is "set flow none".   - Most (all?) USB-to-TTL serial adapters have wires for TX, RX and ground, and not RTS/CTS or other flow control lines.   Thus, your terminal program (or terminal) must be configured to not require flow control; a symptom of misconfiguration is that you see console output, but cannot type anything.  If so, adjust your serial console application's flow control settings to "none".   The serial port is at 115200 baud.
   
    In minicom, run "minicom -s" and set hardware flow control to "no"     - In Kermit, the commands are "set flow none", "set carrier-watch off", "set baud 115200", and, often on NetBSD, "set line /dev/dtyU0".
      - In minicom, run "minicom -s" and set hardware flow control to "no".
   
 ### Enabling ssh  ### Enabling ssh for installation without any console
   
 If you want to enable ssh with the standard image, so that you can log in over the net without either a serial or HDMI console, mount the ffs partition, place /root/.ssh/authorized_keys, uncomment PermitRootLogin in /etc/ssh/sshd_config, and comment out the rc_configure=NO in /etc/rc.conf.  Besides having to find the IP address, you will have to wait for the partition resizing and reboot.  If you want to enable ssh with the standard image, so that you can log in over the net without either a serial or HDMI console, you can edit the configuration of a uSD card before booting.   On another computer, mount the ffs partition, place /root/.ssh/authorized_keys, uncomment PermitRootLogin in /etc/ssh/sshd_config, and comment out the rc_configure=NO in /etc/rc.conf.  Besides having to find the IP address (e.g. from DHCP server logs), you will have to wait for the partition resizing and reboot.
   
 ### Installation with sshramdisk image  ### Installation with sshramdisk image
   
 build.sh (and hence the FTP site) also creates an image 'rpi_inst.img.gz' specifically for installation without HDMI or a serial console.  Note that this image is much smaller and that you will need to fetch the sets over the network.  To use this method, write that image to a uSD card as above, and then:  build.sh (and hence the FTP site) also creates an image 'rpi_inst.img.gz' specifically for installation without HDMI or a serial console, when built for earmv6hf.  Note that this image is much smaller and that you will need to fetch the sets over the network.  To use this method, write that image to a uSD card as above, and then:
   
  - Ensure that you have a lan with a DHCP server.   - Connect an Ethernet cable from the RPI to a LAN with a DHCP server, and another host you can use for ssh.
  - Connect an Ethernet cable from the RPI to the LAN.   - Power on the RPI, and wait.  Watch the logs on the DHCP server, and find the IP address assigned to the RPI.
  - After starting DHCP client, SSH login to with user "sysinst", and password "netbsd".   - Use ssh to log in to the address you found with user "sysinst", and password "netbsd".
    - Be careful to note the ip address given during DHCP so you don't lose your connection   - When installing, ensure that you enable DHCP and ssh, so that you can log in again after the system is installed.
    - Also for after the sysinst is done and the system reboots  
  - sysinst started!  The rpi_inst.img.gz image will only work for systems that use earmv6hf kernels (so not RPI2/3).  See [this port-arm message](https://mail-index.netbsd.org/port-arm/2017/08/18/msg004374.html) for details.
   
 ## Installation via ebijun's image  ## Installation via ebijun's image
   
Line 130  is based on NetBSD-current and is built  Line 175  is based on NetBSD-current and is built 
 work on Raspberry Pi 1, 2 and 3.  This image is typically updated  work on Raspberry Pi 1, 2 and 3.  This image is typically updated
 every few weeks.  every few weeks.
   
  - [https://github.com/ebijun/NetBSD/blob/master/RPI/RPIimage/Image/README](https://github.com/ebijun/NetBSD/blob/master/RPI/RPIimage/Image/README)   - <https://github.com/ebijun/NetBSD/blob/master/RPI/RPIimage/Image/README>
   
 ## Updating the kernel  ## Configuring 802.11
   
   After installation, the Ethernet will function as on any other NetBSD system; simply enable dhcpcd or configure a static address.  USB WiFi devices will also function as on any other NetBSD system; in addition to dhcpcd or static, configure and enable wpa_supplicant.
   
   Note that the built-in WiFi in the RPI3 is not yet supported.   USB WiFi interfaces (that work on NetBSD in general) should all work.  In particular, the following are known to work:
   
    - urtwn0: Realtek (0xbda) 802.11n WLAN Adapter (0x8176), rev 2.00/2.00, addr 5, MAC/BB RTL8188CUS, RF 6052 1T1R
   
   ## Links
   
  - Build a new kernel, e.g. using build.sh. It will tell you where the ELF version of the kernel is, e.g.  The following pages have been published by NetBSD community members.  (Note that some of them are old.)
   
    - <https://www.cambus.net/netbsd-on-the-raspberry-pi/>
   
   # Maintaining a system
   
   ## Booting single user
   
   \todo Describe how to boot single user via the serial console and via the fb console.
   
   ## vcgencmd
   
   The program vcgencmd, referenced in the boot section,  can be found in pkgsrc/misc/raspberrypi-userland.
   
   ## Updating the kernel
   
    - Run uname -a to determine the name of the config of your current kernel.  For NetBSD <= 8, one ran RPI or RPI2.  For NetBSD >=9, one uses GENERIC.
    - Build a new kernel, e.g. using build.sh. Ideally, run "build.sh release" and look in releasedir/binary/kernels.  If building just a kernel, it will tell you where the ELF version of the kernel is, e.g.
          ...           ...
          Kernels built from RPI2:           Kernels built from GENERIC:
           /Users/feyrer/work/NetBSD/cvs/src-current/obj.evbarm-Darwin-XXX/sys/arch/evbarm/compile/RPI2/netbsd            /Users/feyrer/work/NetBSD/cvs/src-current/obj.evbarm-Darwin-XXX/sys/arch/evbarm/compile/GENERIC/netbsd
          ...           ...
    - There are multiple kernel formats produced by a release build, for use with different boot loader schemes..  For GENERIC:
  - Besides the "netbsd" kernel in ELF format, there is also a "netbsd.img" (for current) or "netbsd.bin" (for 7 and 8) kernel that is in a format that the Raspberry can boot.     - netbsd-GENERIC: A normal kernel in ELF format.
      - netbsd-GENERIC.img: In NetBSD >= 9, formatted for the RPI bootloader.
      - netbsd-GENERIC.bin: In NetBSD <= 8, formatted for the RPI bootloader.  In NetBSD >= 9, ??????  In NetBSD 9, this kernel WILL NOT boot.
      - netbsd-GENERIC.ub: A kernel in uboot format.
  - Depending on your hardware version, copy this either to /boot/kernel.img (First generation Pi, Pi Zero hardware) or to /boot/kernel7.img (Pi 2, Pi 3 hardware)   - Depending on your hardware version, copy this either to /boot/kernel.img (First generation Pi, Pi Zero hardware) or to /boot/kernel7.img (Pi 2, Pi 3 hardware)
  - reboot   - reboot
   
 # Wireless Networking  \todo Explain if updating firmware is necessary when e.g. moving from 8 to 9, or 9 to current.
   
   ## Updating dtb files
   
   (This is harder than it should be.)
   Build a release.  gunzip the armv7.img, vnconfig it, and mount the MSDOS partition (e) e.g. on /mnt.  Copy the dtb files from /mnt/*.dtb to /boot, and from /mnt/dtb/*.dtb to /mnt/dtb.
   
   Note that the built-in WiFi in the RPI3 is not yet supported.  It seems that some systems, including RPI, require dtb files in /boot, and some expect  them in /boot/dtb.
   
  - A Realtek 802.11n USB adaptor configures as urtwn(4).  \todo Explain how one is supposed to be able to update these from the dtb files in releasedir/binary/kernel, or fix it to have the same structure.
    - Configure with wpa_supplicant in /etc/rc.conf -  
   
            ifconfig_urtwn0=dhcp  ## Updating the firmware
            dhcpcd=YES  
            dhcpcd_flags="-q -b"  It is highly likely that running NetBSD from a given branch X with firmware from a branch Y < X will not go well.  It is unclear if firmware from a branch Y > X will work.   It is standard practice to use firmware from the right branch.
            wpa_supplicant=YES  
            wpa_supplicant_flags="-B -i urtwn0 -c /etc/wpa_supplicant.conf"  A section below describes the process of updating NetBSD's copy of the firmware from upstream, with testing, by NetBSD developers.  This section is about updating a system's firmware from the firmware in a version of NetBSD.
    - A sample wpa_supplicant.conf can be found at /usr/share/examples/wpa_supplicant/wpa_supplicant.conf  
   (Updating the firmware is harder than it should be.)
   Build a release.  gunzip the armv7.img, vnconfig it, and mount the MSDOS partition (e) e.g. on /mnt.  Copy files from that to /boot that have changes, carefully.
   
   Relevant files include bootcode.bin, start.elf and start_cd.elf.
   
   Compare cmdline.txt, but beware that just overwriting it will lose customizations like using the serial console instead of the framebuffer.
   
   \todo Explain where the firmware is in the source tree, and note that it is not in the installed system image (such as /usr/mdec).  Explain how to update a system (presumably /boot) from either an installed system's new firmware files, or the source tree.  Explain any particular cautions.
   
   \todo Explain if using updated firmware from one branch (e.g. netbsd-current) on a system using a different branch (e.g. netbsd-8) is safe.  Explain if pullups are done to release branches with new firmware.
   
   ## Booting
   
   The device boots by finding a file "bootcode.bin".   The primary location is a FAT32 partition on the uSD card, and an additional location is on a USB drive.  See the [upstream documentation on booting](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/) and read all the subpages.
   
   The standard approach is to use a uSD card, with a fdisk partition table containing a FAT32 partition marked active, and a NetBSD partition.  The NetBSD partition will then contain a disklabel, pointing to an FFS partition (a), a swap partition (b) and the FAT32 boot partition mounted as /boot (e).  The file /boot/cmdline.txt has a line to set the root partition.
   
   One wrinkle in the standard approach is that the disk layout is "boot swap /", but the NetBSD fdisk partition starts at the location of /, so the swap partition is not within the NetBSD fdisk partition.  The / partition can hold a disklabel, while swap cannot.   It is normal to have swap after / (and thus within the fdisk partition), but the arrangement used permits growing / on first boot, for the typical case where a larger uSD is used, compared to the minimum image size.
   
 # GPU  An alternate approach is to have the boot FAT32 partition as above, but to have the entire system including root on an external disk.  This is configured by changing root=ld0a to root=sd0a or root=dk0 (depending on disklabel/GPT).  Besides greater space, part of the point is to avoid writing to the uSD card.
   
   A third approach, workable on the Pi 3 only, is to configure USB host booting (already enabled on the 3+; see the upstream documentation) and have the boot partition also on the external device.  In this case the external device must have an MBR because the hardware's first-stage boot does not have GPT support. In theory the [procedure to program USB host boot mode](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/msd.md) will function on a NetBSD system because the programming is done by bootcode.bin.
   \todo Confirm that putting program_usb_boot_mode=1 in config.txt and booting works to program the OTP bit.  Confirm that one can then boot NetBSD from external USB.
   
   There is no well-defined USB enumeration order, so the preferred approach if one has multiple USB mass storage devices is to use named wedges in both fstab and cmdline.txt.
   
   ## Split-mode aarch32/aarch64
   
   \todo Verify this, and add any necessary cautions about boot code.
   
   The aarch64 kernel can run aarch32 binaries, so one can boot an aarch64 kernel on a system with an aarch32 userland.
   
   # X11 and GPU
   
 ## Video playback  ## Video playback
 Accelerated video playback is supported in NetBSD 7 with the [OMXPlayer](http://pkgsrc.se/multimedia/omxplayer) application and through GStreamer with the [omx](http://pkgsrc.se/multimedia/gst-plugins1-omx) plugin.  
   Accelerated video playback is supported with the [OMXPlayer](http://pkgsrc.se/multimedia/omxplayer) application and through GStreamer with the [omx](http://pkgsrc.se/multimedia/gst-plugins1-omx) plugin.
   
 ## OpenGL ES  ## OpenGL ES
 Accelerated OpenGL ES is supported in NetBSD 7. The GL ES client libraries are included with the [misc/raspberrypi-userland](http://pkgsrc.se/misc/raspberrypi-userland) package.  
   Accelerated OpenGL ES is supported.  The GL ES client libraries are included with the [misc/raspberrypi-userland](http://pkgsrc.se/misc/raspberrypi-userland) package.
   
 ## Quake 3  ## Quake 3
   
 A Raspberry Pi optimized build of *ioquake3* is available in the [games/ioquake3-raspberrypi](http://pkgsrc.se/games/ioquake3-raspberrypi) package. To use it, the following additional resources are required:  A Raspberry Pi optimized build of *ioquake3* is available in the [games/ioquake3-raspberrypi](http://pkgsrc.se/games/ioquake3-raspberrypi) package. To use it, the following additional resources are required:
   
  - pak0.pk3 from Quake 3 CD   - pak0.pk3 from Quake 3 CD
Line 177  A Raspberry Pi optimized build of *ioqua Line 287  A Raspberry Pi optimized build of *ioqua
 Place the pak0.pk3 file in the /usr/pkg/lib/ioquake3/baseq3 directory.  Place the pak0.pk3 file in the /usr/pkg/lib/ioquake3/baseq3 directory.
   
 ## RetroArch / Libretro  ## RetroArch / Libretro
   
 Using [emulators/retroarch](http://pkgsrc.se/emulators/retroarch) it is possible to run many emulators at full speed the Raspberry Pi. Emulator cores for various gaming consoles are available in the [emulators/libretro-*](http://pkgsrc.se/search.php?so=libretro-) packages. To begin using retroarch:  Using [emulators/retroarch](http://pkgsrc.se/emulators/retroarch) it is possible to run many emulators at full speed the Raspberry Pi. Emulator cores for various gaming consoles are available in the [emulators/libretro-*](http://pkgsrc.se/search.php?so=libretro-) packages. To begin using retroarch:
   
  - Install [emulators/retroarch](http://pkgsrc.se/emulators/retroarch)   - Install [emulators/retroarch](http://pkgsrc.se/emulators/retroarch)
  - Install the libretro core for the system you would like to emulate (lets take [emulators/libretro-gambatte](http://pkgsrc.se/emulators/libretro-gambatte), a GameBoy Color emulator, as an example).   - Install the libretro core for the system you would like to emulate (lets take [emulators/libretro-gambatte](http://pkgsrc.se/emulators/libretro-gambatte), a GameBoy Color emulator, as an example).
  - Plug in a USB HID compatible Gamepad, such as the Logitech F710 in "DirectInput" mode (set "D/X" switch to "D").   - Make sure your user has read and write permissions on `/dev/vchiq`.
  - Create a config file for your gamepad using *retroarch-joyconfig*.   - Plug in a USB HID compatible Gamepad, such as the Logitech F710 in "DirectInput" mode (set "D/X" switch to "D"). Note that since the framebuffer GL driver will not allow for keyboard input in RetroArch, you will have to copy your joypad configuration from another system.
 [[!template  id=programlisting text="""   - Configure retroarch by editing $HOME/.config/retroarch/retroarch.cfg:
 $ retroarch-joyconfig -o gamepad.cfg          video_driver = "gl"
 """]]          input_driver = "null"
  - Launch the emulator from the command-line (no X required):          joypad_driver = "sdl2"
 [[!template  id=programlisting text="""          menu_driver = "rgui"
 $ retroarch --appendconfig gamepad.cfg -L /usr/pkg/lib/libretro/gambatte_libretro.so game.gbc  
 """]]  
   
 # Developer notes  # Developer notes
   
 These notes are for people working on improvements to RPI support in NetBSD.  These notes are for people working on improvements to RPI support in NetBSD.
   
 ## Updating the firmware  ## Updating the firmware version in the NetBSD sources
   
   (Note that trying new firmware may result in a non-bootable system, so
   be prepared to recover the bootable media with another system.)
   
 You probably don't want to do this. Firmware updates can break things,  Upstream firmware releases are
 and the latest firmware that's been tested is already included in the  [on GitHub](https://github.com/raspberrypi/firmware/releases).
 NetBSD build you installed.  Copy all files except `kernel*.img` into `/boot` and reboot.
   
 If you're feeling adventurous (or are the port maintainer), here's what  New firmware should pass all of the following tests before being committed to NetBSD.
 to test whenever you try new firmware:  
   
 - Audio  - Audio
 - OMXPlayer (and [[!template id=man name="vchiq"]])  - OMXPlayer (and [[!template id=man name="vchiq"]])
 - Serial/framebuffer console  - Serial/framebuffer console
 - CPU frequency scaling  - CPU frequency scaling
   
 That goes for all of `rpi[0123]`.  Tests should be run on all of `rpi[0123]`.
   
 Upstream firmware releases are  ## Testing with anita and qemu
 [on GitHub](https://github.com/raspberrypi/firmware/releases).  
 Copy all files except `kernel*.img` into `/boot` and reboot.  See the anita section in the evbarm page.
   
   It is not currently known how to emulate a RPI in qemu, and therefore anita does not yet have support for this.  \todo Add a command-line example to run qemu emulating some RPI model.
   
   # Misc notes
   
   Miscellaneous notes about Raspberry PI.
   
   ## Power supply needed (or: why there is a little rainbow square in the top-right corner?)
   
   Raspberry Pi devices are powered by 5V micro USB and a 2.5A (2500mA)
   power supply is recommended.  For more information please read:
   
    <https://www.raspberrypi.org/documentation/faqs/#pi-power>
   
   Power glitches can also manifest in other ways, e.g. with an USB
   disk plugged:
   
   [[!template id=programlisting text="""
   sd0(umass0:0:0:0): generic HBA error
   sd0: cache synchronization failed
   """]]
   
   Using a recommended power supply avoid such issues.
   
   ## Xenon death flash (Raspberry Pi 2 is camera-shy)
   
   When using laser pointers or xenon flashes in cameras (or other
   flashes of high-intensity long-wave light) against a Raspberry Pi
   2 the Pi can power itself off.
   For more information please read:
   
    <https://www.raspberrypi.org/blog/xenon-death-flash-a-free-physics-lesson/>

Removed from v.1.71  
changed lines
  Added in v.1.132


CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb