Diff for /wikisrc/ports/evbarm/raspberry_pi.mdwn between versions 1.103 and 1.127

version 1.103, 2018/11/06 22:29:26 version 1.127, 2020/06/19 12:56:59
Line 1 Line 1
 [[!meta title="NetBSD/evbarm on Raspberry Pi"]]  [[!meta title="NetBSD/evbarm on Raspberry Pi"]]
   
 This page attempts to document and coordinate efforts towards NetBSD/evbarm on [Raspberry Pi](http://www.raspberrypi.org).  All [board variants](https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications) are supported.  We use e.g. "RPI2" to refer to "Raspberry Pi 2" to save precious bytes on this page.  This page describes the NetBSD/evbarm port on [Raspberry Pi](http://www.raspberrypi.org) hardware.  All [board variants](https://en.wikipedia.org/wiki/Raspberry_Pi#Specifications) earlier than the RPI4 are believed supported, and specific boards known to work are listed.  We use e.g. "RPI2" to refer to "Raspberry Pi 2" to save precious bytes on this page.  This web page is still 32-bit (aarch32) centric, even though as of mid 2020 aarch64 is also a normal approach.
   
 Initial, limited, Raspberry Pi support was introduced in NetBSD 6.0. NetBSD 7.0 adds complete support for the board, along with introducing support for the quad-core Raspberry Pi 2 board.  Raspberry Pi 3 support was added for NetBSD 8, and backported to NetBSD 7 in July of 2017.  (This page assumes those using NetBSD 7 are using 7.2, or the netbsd-7 branch after mid 2018.)  Initial, limited, Raspberry Pi support was introduced in NetBSD 6.0.  NetBSD 7.0 added complete support for the board, along with introducing support for the quad-core Raspberry Pi 2 board.  Raspberry Pi 3 support was added for NetBSD 8.  NetBSD 9 supports aarch64, meaning using the newer processors in 64-bit mode (via -current in mid 2018).
   
   Overall, this page takes the view that NetBSD 7 and earlier are obsolete; aside from history, it is written as if those versions don't exist.
   
 [[images/raspberrypi.jpg]]  [[images/raspberrypi.jpg]]
   
Line 12  Initial, limited, Raspberry Pi support w Line 14  Initial, limited, Raspberry Pi support w
   
 # What works (and what doesn't yet)  # What works (and what doesn't yet)
   
   "Works" is primarily relative to the earmv6hf-el and earmv7hf-el CPU targets (32-bit).
   
 ## NetBSD 7 and NetBSD 8  ## NetBSD 7 and NetBSD 8
   
  - RPI1, RPI2, RPI2-1.2, RPI3, RPI3+ (except RPI3 builtin WiFi and bluetooth)   - RPI1, RPI2, RPI2-1.2, RPI3, RPI3+ (except RPI3 builtin WiFi and bluetooth)
Line 31  Initial, limited, Raspberry Pi support w Line 35  Initial, limited, Raspberry Pi support w
  - I²C: works, could use enhancements, man page   - I²C: works, could use enhancements, man page
  - SPI: could use enhancements, man page   - SPI: could use enhancements, man page
   
   ## NetBSD 9
   
    - aarch64 support (RPI3, and should work on all supported systems with 64-bit CPUs)
    - RPI3 new SD host controller driver
   
 ## NetBSD current  ## NetBSD current
   
  - RPI3B+   
  - RPI3 builtin bluetooth   - RPI3 builtin bluetooth
  - RPI3 new SD host controller driver  
   ## (maybe) NetBSD current, with manual steps
   
      These items do not work in the sense that they simply function after a standard install.  Being listed here implies only that there has been list traffic that implies that after taking a bunch of steps (e.g. new firmware, new dtbs, enabling drivers, applying patches), one can end up with the feature working.  The HOWTO explicitly refrains from describing these steps because they are ephemeral.  However, the fact that list traffic indicates success is possible is a clue that proper support is on the horizon, and that is notable.
   
    - RPI3 and RPI0W builtin WiFi
   
 ## What needs documenting if it works  ## What needs documenting if it works
   
Line 45  Initial, limited, Raspberry Pi support w Line 58  Initial, limited, Raspberry Pi support w
   
 ## What needs work  ## What needs work
   
    - RPI4 (as of 2020-01, still does not work in current)
  - USB (host); isochronous transfers.   - USB (host); isochronous transfers.
  - RPI3 builtin WiFi   - RPI0W Bluetooth Low Energy (probably)
   
 # CPU types  # CPU types
   
  - RPI1 uses "earmv6hf".   - RPI1 uses "earmv6hf".
  - RPI0 uses "\todo".   - RPI0 uses "earmv6hf".
    - RPI0W uses "earmv6hf".
  - RPI2 uses "earmv7hf".   - RPI2 uses "earmv7hf".
  - RPI3 uses "earmv7hf".   - RPI2-1.2 uses "earmv7hf" or "aarch64" (armv8 CPU hardware)
  - RPI0W uses "\todo".   - RPI3 uses "earmv7hf" or "aarch64" (armv8 CPU hardware)
    - RPI4 \todo
   
 Note that one can run a build of earmv6hf on the 2 and 3.  There will still be a kernel7, built to use the 2/3 hardware, but with the armv6 instruction set.  Note that one can run a build of earmv6hf on the 2 and 3.  There will still be a kernel7, built to use the 2/3 hardware, but with the armv6 instruction set.
   
 In theory the code compiled for earmv7hf will be faster, but anecdotal experience is that it doesn't matter that much.  In theory the code compiled for earmv7hf will be faster, but anecdotal experience is that it doesn't matter that much.  \todo Post a link to a quality benchmark.
   
 While the evbarm port has "eb" variants (for big-endian mode), the RPI systems do not support eb and these variants will not work.  Systems built with older CPU architectures (earm, earmv4, earmv5) are not expected to work on RPI.  While the evbarm port has "eb" variants (for big-endian mode), the RPI systems do not support eb and these variants will not work.  Systems built with older CPU architectures (earm, earmv4, earmv5) are not expected to work on RPI.
   
 See also [[NetBSD/aarch64|aarch64]] for running the RPI2-1.2 and RPI3/RPI3+ in 64-bit mode.  The RPI2-1.2 and RPI3 have an armv8 CPU that supports aarch64 (64-bit
   mode) in addition to aarch32 (regular 32-bit ARM).  This is supported,
   from 9 onwards, by the "aarch64" MACHINE_ARCH of evbarm, also
   available in build.sh via the alias evbarm64.  This is also
   referred to as [[NetBSD/aarch64|aarch64]].
   
 # Installation  # Installation
   
Line 77  Note that SD cards generally have limite Line 97  Note that SD cards generally have limite
   
 ## Choosing a version  ## Choosing a version
   
 First, decide if you want to install a formal release (7.2 or 8.0), a stable branch build (netbsd-7, netbsd-8), or NetBSD-current.  For people who don't know how to choose among those, a recent build of netbsd-8 is probably best, with 8.0 the choice for those who value being at exactly a formal release.  First, decide if you want to install a formal release (8.0 or 9.0), a stable branch build (netbsd-8, netbsd-9), or NetBSD-current.  For people who don't know how to choose among those, a recent build of netbsd-9 is probably best, with 9.0 the choice for those who value being at exactly a formal release.
   
 See also "ebijun's image", below, which is NetBSD-current and includes packages.  See also "ebijun's image", below, which is NetBSD-current and includes packages.
   
Line 97  Consider setting RELEASEMACHINEDIR if yo Line 117  Consider setting RELEASEMACHINEDIR if yo
   
 ### NetBSD autobuild HTTPS/FTP servers  ### NetBSD autobuild HTTPS/FTP servers
   
 NetBSD provides nightly builds on [nyftp.netbsd.org](https://nyftp.netbsd.org/pub/NetBSD-daily/).  The next directory level is the branch being built (netbsd-7, netbsd-8, HEAD, and more), plus optionally things like compiler type.  It is followed by date/time, e.g. "HEAD/201811051650Z"; once a build is complete the symlink "latest" is adjusted to point to it.  The next level is "${MACHINE}-${MACHINE_ARCH}", e.g. "evbarm-earmv7hf", and multiple combinations are provided.  NetBSD provides nightly builds on [nycdn.netbsd.org](https://nycdn.netbsd.org/pub/NetBSD-daily/).  The next directory level is the branch being built (netbsd-7, netbsd-8, HEAD, and more), plus optionally things like compiler type.  It is followed by date/time, e.g. "HEAD/201811051650Z"; once a build is complete the symlink "latest" is adjusted to point to it.  The next level is "${MACHINE}-${MACHINE_ARCH}", e.g. "evbarm-earmv7hf", and multiple combinations are provided.
   
 An example URL, arguably the standard approach for first-time NetBSD/RPI users, is https://nyftp.netbsd.org/pub/NetBSD-daily/netbsd-8/latest/evbarm-earmv7hf/binary/gzimg/  An example URL, arguably the standard approach for first-time NetBSD/RPI users, is https://nycdn.netbsd.org/pub/NetBSD-daily/netbsd-8/latest/evbarm-earmv7hf/binary/gzimg/
   
 ### release layout  ### release layout
   
Line 112  Once you get to the releasedir, self-bui Line 132  Once you get to the releasedir, self-bui
   
 ## Preparing a uSD card  ## Preparing a uSD card
   
 Once you have rpi.img.gz (or rpi_inst), put it on a uSD card using gunzip and dd, for example:  Once you have rpi.img.gz (or rpi_inst for earmv6 boards), put it on a uSD card using gunzip and dd, for example:
   
  - gunzip rpi.img.gz   - gunzip rpi.img.gz
  - dd if=rpi.img of=/dev/disk1   - dd if=rpi.img of=/dev/disk1
Line 125  The standard approach is to use a USB ke Line 145  The standard approach is to use a USB ke
   
 By default the rpi.img is set to use the HDMI output.  If you wish to use a serial console, mount the FAT32 partition on another system and edit cmdline.txt and remove '"console=fb"'.  By default the rpi.img is set to use the HDMI output.  If you wish to use a serial console, mount the FAT32 partition on another system and edit cmdline.txt and remove '"console=fb"'.
   
  - Most (all?) USB-to-TTL serial adapters have wires for Tx, Rx and ground, and not RTS/CTS or other flow control lines.   Thus, your terminal program (or terminal) must be configured to not require flow control; a symptom of misconfiguration is that you see console output, but cannot type anything.  If so, adjust your serial console application's flow control settings to "none".   - Most (all?) USB-to-TTL serial adapters have wires for TX, RX and ground, and not RTS/CTS or other flow control lines.   Thus, your terminal program (or terminal) must be configured to not require flow control; a symptom of misconfiguration is that you see console output, but cannot type anything.  If so, adjust your serial console application's flow control settings to "none".   The serial port is at 115200 baud.
   
    - In Kermit, the command is "set flow none".     - In Kermit, the commands are "set flow none", "set carrier-watch off", "set baud 115200", and, often on NetBSD, "set line /dev/dtyU0".
    - In minicom, run "minicom -s" and set hardware flow control to "no".     - In minicom, run "minicom -s" and set hardware flow control to "no".
   
 ### Enabling ssh for installation without any console  ### Enabling ssh for installation without any console
Line 143  build.sh (and hence the FTP site) also c Line 163  build.sh (and hence the FTP site) also c
  - Use ssh to login to the address you found with user "sysinst", and password "netbsd".   - Use ssh to login to the address you found with user "sysinst", and password "netbsd".
  - When installing, ensure that you enable DHCP and ssh, so that you can log in again after the system is installed.   - When installing, ensure that you enable DHCP and ssh, so that you can log in again after the system is installed.
   
 \todo Verify that the above is accurate and sufficient.  The rpi_inst.img.gz image will only work for systems that use earmv6hf kernels (so not RPI2/3).  See [this port-arm message](https://mail-index.netbsd.org/port-arm/2017/08/18/msg004374.html) for details.
   
 ## Installation via ebijun's image  ## Installation via ebijun's image
   
Line 153  is based on NetBSD-current and is built  Line 173  is based on NetBSD-current and is built 
 work on Raspberry Pi 1, 2 and 3.  This image is typically updated  work on Raspberry Pi 1, 2 and 3.  This image is typically updated
 every few weeks.  every few weeks.
   
  - [https://github.com/ebijun/NetBSD/blob/master/RPI/RPIimage/Image/README](https://github.com/ebijun/NetBSD/blob/master/RPI/RPIimage/Image/README)   - <https://github.com/ebijun/NetBSD/blob/master/RPI/RPIimage/Image/README>
   
 ## Configuring 802.11  ## Configuring 802.11
   
Line 171  The following pages have been published  Line 191  The following pages have been published 
   
 # Maintaining a system  # Maintaining a system
   
   ## Booting single user
   
   \todo Describe how to boot single user via the serial console and via the fb console.
   
 ## vcgencmd  ## vcgencmd
   
 The program vcgencmd, referenced in the boot section,  can be found in pkgsrc/misc/raspberrypi-userland.  The program vcgencmd, referenced in the boot section,  can be found in pkgsrc/misc/raspberrypi-userland.
Line 188  The program vcgencmd, referenced in the  Line 212  The program vcgencmd, referenced in the 
  - Depending on your hardware version, copy this either to /boot/kernel.img (First generation Pi, Pi Zero hardware) or to /boot/kernel7.img (Pi 2, Pi 3 hardware)   - Depending on your hardware version, copy this either to /boot/kernel.img (First generation Pi, Pi Zero hardware) or to /boot/kernel7.img (Pi 2, Pi 3 hardware)
  - reboot   - reboot
   
   \todo Explain if updating firmware is necessary when e.g. moving from 8 to 9, or 9 to current.
   
 ## Updating the firmware  ## Updating the firmware
   
 A section below describes the process of updating NetBSD's copy of the firmware from upstream, with testing, by NetBSD developers.  This section is about updating a system's firmware from the firmware in a version of NetBSD.  A section below describes the process of updating NetBSD's copy of the firmware from upstream, with testing, by NetBSD developers.  This section is about updating a system's firmware from the firmware in a version of NetBSD.
   
 \todo Explain where the firmware is in the source tree, and if it is in the installed system image (such as /usr/mdec).  Explain how to update a system (presumably /boot) from either an installed system's new firmware files, or the source tree.  Explain any particular cautions.  \todo Explain where the firmware is in the source tree, and note that it is not in the installed system image (such as /usr/mdec).  Explain how to update a system (presumably /boot) from either an installed system's new firmware files, or the source tree.  Explain any particular cautions.
   
 Probably, for the RPI3B+, one needs to use -current, or use -8 with firmware from -current.  \todo Defuzz.  
   
 \todo Explain if using updated firmware from one branch (e.g. netbsd-current) on a system using a different branch (e.g. netbsd-8) is safe.  Explain if pullups are done to release branches with new firmware.  \todo Explain if using updated firmware from one branch (e.g. netbsd-current) on a system using a different branch (e.g. netbsd-8) is safe.  Explain if pullups are done to release branches with new firmware.
   
Line 202  Probably, for the RPI3B+, one needs to u Line 226  Probably, for the RPI3B+, one needs to u
   
 The device boots by finding a file "bootcode.bin".   The primary location is a FAT32 partition on the uSD card, and an additional location is on a USB drive.  See the [upstream documentation on booting](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/) and read all the subpages.  The device boots by finding a file "bootcode.bin".   The primary location is a FAT32 partition on the uSD card, and an additional location is on a USB drive.  See the [upstream documentation on booting](https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/) and read all the subpages.
   
 The standard approach is to use a uSD card, with a fdisk partition table containing a FAT32 partition marked active, and a NetBSD partition.  The NetBSD partition will then contain a disklabel, pointing to an FFS partition (a), a swap paritiion (b) and the FAT32 boot partition mounted as /boot (e).  The file /boot/cmdline.txt has a line to set the root partition.  The standard approach is to use a uSD card, with a fdisk partition table containing a FAT32 partition marked active, and a NetBSD partition.  The NetBSD partition will then contain a disklabel, pointing to an FFS partition (a), a swap partition (b) and the FAT32 boot partition mounted as /boot (e).  The file /boot/cmdline.txt has a line to set the root partition.
   
 One wrinkle in the standard approach is that the disk layout is "boot swap /", but the NetBSD fdisk partition starts at the location of /.   The / partition can hold a disklabel, while swap cannot.   It is normal to have swap after / (and thus within the fdisk partition), but the arrangement used permits growing / on first boot, for the typical case where a larger uSD is used, compared to the minimum image size.  One wrinkle in the standard approach is that the disk layout is "boot swap /", but the NetBSD fdisk partition starts at the location of /, so the swap partition is not within the NetBSD fdisk partition.  The / partition can hold a disklabel, while swap cannot.   It is normal to have swap after / (and thus within the fdisk partition), but the arrangement used permits growing / on first boot, for the typical case where a larger uSD is used, compared to the minimum image size.
   
 An alternate approach is to have the boot FAT32 partition as above, but to have the entire system including root on an external disk.  This is configured by changing root=ld0a to root=sd0a or root=dk0 (depending on disklabel/GPT).  Besides greater space, part of the point is to avoid writing to the uSD card.  An alternate approach is to have the boot FAT32 partition as above, but to have the entire system including root on an external disk.  This is configured by changing root=ld0a to root=sd0a or root=dk0 (depending on disklabel/GPT).  Besides greater space, part of the point is to avoid writing to the uSD card.
   
Line 213  A third approach, workable on the Pi 3 o Line 237  A third approach, workable on the Pi 3 o
   
 There is no well-defined USB enumeration order, so the preferred approach if one has multiple USB mass storage devices is to use named wedges in both fstab and cmdline.txt.  There is no well-defined USB enumeration order, so the preferred approach if one has multiple USB mass storage devices is to use named wedges in both fstab and cmdline.txt.
   
   ## Split-mode aarch32/aarch64
   
   \todo Verify this, and add any necessary cautions about boot code.
   
   The aarch64 kernel can run aarch32 binaries, so one can boot a aarch64 kernel on a system with aarch32 userland.
   
 # X11 and GPU  # X11 and GPU
   
 ## Video playback  ## Video playback
Line 235  Using [emulators/retroarch](http://pkgsr Line 265  Using [emulators/retroarch](http://pkgsr
   
  - Install [emulators/retroarch](http://pkgsrc.se/emulators/retroarch)   - Install [emulators/retroarch](http://pkgsrc.se/emulators/retroarch)
  - Install the libretro core for the system you would like to emulate (lets take [emulators/libretro-gambatte](http://pkgsrc.se/emulators/libretro-gambatte), a GameBoy Color emulator, as an example).   - Install the libretro core for the system you would like to emulate (lets take [emulators/libretro-gambatte](http://pkgsrc.se/emulators/libretro-gambatte), a GameBoy Color emulator, as an example).
  - Plug in a USB HID compatible Gamepad, such as the Logitech F710 in "DirectInput" mode (set "D/X" switch to "D").   - Make sure your user has read and write permissions on `/dev/vchiq`.
  - Create a config file for your gamepad using *retroarch-joyconfig*.   - Plug in a USB HID compatible Gamepad, such as the Logitech F710 in "DirectInput" mode (set "D/X" switch to "D"). Note that since the framebuffer GL driver will not allow for keyboard input in RetroArch, you will have to copy your joypad configuration from another system.
 [[!template  id=programlisting text="""   - Configure retroarch by editing $HOME/.config/retroarch/retroarch.cfg:
 $ retroarch-joyconfig -o gamepad.cfg          video_driver = "gl"
 """]]          input_driver = "null"
  - Launch the emulator from the command-line (no X required):          joypad_driver = "sdl2"
 [[!template  id=programlisting text="""          menu_driver = "rgui"
 $ retroarch --appendconfig gamepad.cfg -L /usr/pkg/lib/libretro/gambatte_libretro.so game.gbc  
 """]]  
   
 # Developer notes  # Developer notes
   
Line 269  Tests should be run on all of `rpi[0123] Line 297  Tests should be run on all of `rpi[0123]
   
 ## Testing with anita and qemu  ## Testing with anita and qemu
   
 anita has support for evbarm.  Install qemu and dtb-arm-vexpress from pkgsrc.  Note that the release subdirectory should be evbarm-earmv6hf or evbarm-earmv7hf.  See the anita section in the evbarm page.
   
   It is not currently known how to emulate a RPI in qemu, and therefore anita does not yet have support for this.  \todo Add a command-line example to run qemu emulating some RPI model.
   
   
   # Misc notes
   Miscellaneous notes about Raspberry PI.
   
   ## Power supply needed (or: why there is a little rainbow square in the top-right corner?)
   Raspberry Pi devices are powered by 5V micro USB and a 2.5A (2500mA)
   power supply is recommended.  For more information please read:
   
    <https://www.raspberrypi.org/documentation/faqs/#pi-power>
   
   Power glitches can also manifest in other ways, e.g. with an USB
   disk plugged:
   
   [[!template id=programlisting text="""
   sd0(umass0:0:0:0): generic HBA error
   sd0: cache synchronization failed
   """]]
   
   Using a recommended power supply avoid such issues.
   
   ## Xenon death flash (Raspberry Pi 2 is camera-shy)
   When using laser pointers or xenon flashes in cameras (or other
   flashes of high-intensity long-wave light) against a Raspberry Pi
   2 the Pi can power itself off.
   For more information please read:
   
 \todo Explain how to select various RPI models to emulate.   <https://www.raspberrypi.org/blog/xenon-death-flash-a-free-physics-lesson/>
 \todo Explain about how DTB works.  
 \todo Give a command line example to run qemu (without anita).  

Removed from v.1.103  
changed lines
  Added in v.1.127


CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb