1: [[!template id=port
2: port="evbarm"
3: port_alt="arm"
4: port_var1="earm"
5: port_var2="earmeb"
6: port_var3="earmv6hf"
7: port_var4="earmv7hf"
8: port_var5="earmv7hfeb"
9: port_var_install_notes="evbarm-earm"
10: cur_rel="8.0"
11: future_rel="9.0"
12: changes_cur="8.0"
13: changes_future="9.0"
14: thumbnail="http://www.netbsd.org/images/ports/evbarm/adi_brh.gif"
15: about="""
16: NetBSD/evbarm is the port of NetBSD to various evaluation and prototyping
17: boards based on CPUs implementing the ARM architecture. NetBSD/evbarm also
18: supports some specific embedded system products based on prototype board
19: designs.
20:
21: Matt Thomas is the maintainer of NetBSD/evbarm.
22:
23: ### CPU types
24:
25: The evbarm port can be built with a variety of CPU options, corresponding to the
26: [large array of ARM CPU architectures](https://en.wikipedia.org/wiki/ARM_architecture#Cores).
27: There are
28: four main variables: the word size, the instruction set, the
29: endianness, and whether there is hardware floating point. By default
30: the CPU type is "earm", and this implies aarch32 (32-bit), \todo cpu
31: architecture, little endian (el when explicitly stated), and soft
32: (Emulated) floating point. Another example, suitable for Raspberry PI
33: 2, is earmv7hf, which is aarch32, the v7 instruction set, little
34: endian, and hardware floating point.
35:
36: Typically, various boards are best compiled with a CPU type that
37: matches the board's CPU and floating point support, but generally a
38: lower CPU instruction set version is workable on a newer board. See
39: build.sh and look for aliases for the evbarm port.
40:
41: Through NetBSD 8, the evbarm port has supported exclusively the
42: aarch32 (32-bit CPU) sub-family of the ARM architecture. Some
43: processors, such as many supporting the armv8 CPU architecture, also
44: support a 64-bit instruction set, referred to as aarch64. This is
45: sometimes referred to as a distinct port, [[NetBSD/aarch64|aarch64]],
46: with code in src/sys/arch/aarch64, but it is built as the evbarm port
47: with aarch64 cpu type, and available as the alias evbarm64.
48:
49: Note that MACHINE_ARCH=aarch64 currently refers to the A64 instruction
50: set and the aarch64 architecture, built for the armv8 architecture.
51: (Note also that armv8 is the first architecture to support aarch64, so
52: this will not be an issue until at least armv9.)
53:
54: #### ABI types
55:
56: There are two basic ABIs on ARM. One, called oabi, assumed a
57: particular kind of hardware floating point (FPA). This results in
58: faulting any floating-point instructions for kernel emulation on a
59: vast number of CPus, which is very slow. A newer one, called eabi,
60: has two variants. Both have stricter alignment rules, tending to 8
61: byte rather than 4 bytes for 8-byte types (but actually read the specs
62: if you care). The one without "hf" emulates floating point without
63: causing traps/emulation, and "hf" uses VFP instructions, which are
64: present on modern CPUs. See the
65: [TS-7200](https://wiki.embeddedarm.com/wiki/EABI_vs_OABI) and
66: [Debian](https://wiki.debian.org/ArmEabiPort) documentation.
67:
68: Now, EABI is normal, and OABI is crufty. The only real reason NetBSD
69: retains OABI support is binary compatibility with older releases. The
70: "arm" and "armeb" MACHINE_ARCH targets are OABI; the rest of the
71: targets, all having "earm" are EABI.
72:
73: \todo CHECK THIS: The "aarch64" MACHINE_ARCH target is an EABI variant.
74:
75: ### Relationship of MACHINE_ARCH to official ARM terminology
76:
77: Note that these are all little endian, and have big endian variants
78: with a "eb" suffix.
79:
80: [[!table data="""
81: MACHINE_ARCH |bits | ARM architecture version |ABI
82: arm |32 |? |oabi
83: earm |32 |armv4 (effectively an alias) |eabi
84: earmv4 |32 |armv4 (no thumb, so ok on strongarm) |eabi
85: earmv5 |32 |armv5t |eabi
86: earmv6 |32 |armv6 |eabi
87: earmv7 |32 |armv7 |eabi
88: aarch64 |64 |armv8 |\todo ? eabi
89: """]]
90:
91: \todo Explain why, if we have armv4, and this is confusing, we still have earm as a MACHINE_ARCH.
92:
93: \todo Explain why aarch64 is a MACHINE_ARCH, when it seems like it
94: should be something like armv8hf_64.
95:
96: \todo Explain if MACHINE_ARCH values correspond to a particular
97: argument to some CPU selection command in gcc (and/or clang).
98:
99: ### Kernels and userland
100:
101: The evbarm userland can be used on any system that can run code of the
102: CPU type used for the build. Typically, a particular board requires a
103: kernel for that board.
104:
105: ### anita and qemu
106:
107: anita can be used to test builds. (In addition to anita, install qemu and dtb-arm-vexpress from pkgsrc.) The release subdirectory should follow the naming convention on the autobuild cluster, used below.
108:
109: - evbarm-earmv7hf uses "qemu-system-arm -M vexpress-a15"
110: - evbarm-aarch64 uses "qemu-system-aarch64 -M virt"
111: - Information on how to test emulated versions of other specific hardware is welcome.
112:
113: ### Board specific information
114: - [[Allwinner sunxi family SoCs|Allwinner]]
115: - [[BeagleBone and BeagleBone Black|BeagleBone]]
116: - [[NVIDIA Tegra|Tegra]]
117: - [[ODROID C1 and C1+|ODROID-C1]]
118: - [[Raspberry Pi 1, 2 and 3|Raspberry Pi]]
119:
120: """
121:
122: supported_hardware="""
123:
124: **NOTE**: This list is incomplete. For a full list of configurations, please see the [evbarm kernel configs](http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/arch/evbarm/conf/) directory in CVS.
125:
126: [[!toc startlevel=3]]
127:
128: ### ADI Engineering **BRH** ("Big Red Head")
129:
130: The BRH is an evaluation and development platform for the Intel **i80200**
131: XScale processor. The BRH is based on ADI's **BECC** ("Big Endian Companion
132: Chip"). The BRH is capable of both big- and little-endian operation, although
133: NetBSD currently only supports little-endian operation.
134:
135: Support for the BRH was written by Jason Thorpe, and contributed by Wasabi
136: Systems, Inc.
137:
138: * On-board NS16550-compatible serial ports (_com_)
139: * On-board Intel i82559 Ethernet on the PCI bus (_fxp_)
140: * On-chip timer on the BECC (used as system clock)
141: * Other devices inserted into the PCI slot
142:
143: The BRH comes with 128M of SDRAM. Systems with BECC revision 7 or less are
144: limited to 64M due to the layout of the PCI DMA windows. Users of these
145: systems should obtain an FPGA upgrade from ADI to revision 8 or later of the
146: BECC.
147:
148: ### Allwinner Technology
149: Various boards based on [[Allwinner]] SoCs are supported, including the BananaPi, Cubieboard 2, Cubietruck, Cubieboard 4, and Merrii Hummingbird A31.
150:
151: ### Arcom **Viper**
152:
153: The Arcom Viper is a single board computer based on the PXA255 XScale
154: processor.
155:
156: Support for the Arcom Viper was written by Antti Kantee.
157:
158: * On-chip timers (_saost_ used as system clock)
159: * On-chip serial ports (_com_)
160: * On-board SMC91C111 ethernet (_sm_)
161:
162: ### ARM, Ltd. **Integrator**
163:
164: The Integrator/AP is an ATX form-factor board that is used for development of
165: ARM processor-based designs. It supports up to four processors on plug-in core
166: modules, and provides clocks, a bus interface, and interrupt support. The
167: Integrator/AP also supports logic modules which provide additional
168: peripherals, and can accommodate up to three PCI expansion cards. The
169: Integrator/AP can also be inserted into a CompactPCI backplane.
170:
171: Support for the Integrator was written by Richard Earnshaw, and contributed by
172: ARM, Ltd.
173:
174: * PrimeCell PL010 UARTs in the System Controller FPGA (_plcom_)
175: * PrimeCell PL030 Real-time Clock in the System Controller FPGA (_plrtc_)
176: * PrimeCell PL181 MultiMedia Card Interface
177: * Other devices inserted into the PCI expansion slots
178:
179: ### Atmark Techno **Armadillo-9**
180:
181: The Armadillo-9 is a single board computer based on the EP9315 processor.
182:
183: Support for the Armadillo-9 was written by Katsuomi Hamajima.
184:
185: * On-CPU RS232 UARTs (2) (_epcom_)
186: * On-CPU 10/100 Ethernet MAC (_epe_)
187: * system clock from on-CPU timers (_epclk_)
188: * CompactFlash socket (_eppcic_)
189: * USB 1.1 ports (_ohci_)
190:
191: ### BeagleBoard.org **BeagleBoard** and **BeagleBoard-xM**
192: The [[BeagleBoard]] is a low-power open-source hardware single-board computer from BeagleBoard.org.
193:
194: ### BeagleBoard.org **BeagleBone** and **BeagleBone Black**
195: The [[BeagleBone]] is a low-cost credit-card-sized computer from BeagleBoard.org.
196:
197: ### Gumstix, Inc. **gumstix**
198:
199: The [gumstix](http://www.gumstix.com/) is a small form-factor motherboard
200: based on the PXA255 and PXA270 XScale processor. Supports only PXA255 now.
201:
202: Support for the gumstix was written by KIYOHARA Takashi.
203:
204: * basix
205: * cfstix
206: * etherstix
207: * netCF
208: * netDUO
209: * netDUO-mmc
210: * netMMC
211:
212: When booting, it is necessary to set these with u-boot dynamically.
213:
214: <pre> > go 0xa0200000 busheader=basix</pre>
215:
216: * audiostix
217: * console-st (waysmall - STUART)
218: * console-hw (waysmall)
219: * GPSstix (GPS not test)
220: * tweener
221:
222: ### Hardkernel ODROID-C1 and ODROID-C1+
223:
224: The [[ODROID-C1]] is a quad core Cortex-A5 small form-factor board from Hardkernel co., Ltd.
225:
226: ### Intel **DBPXA250** ("Lubbock")
227:
228: DBPXA250 (a.k.a. Lubbock) is an evaluation and development platform for the
229: Intel **PXA250** XScale Core application processor. More information about the **DBPXA250** can be found at [Intel website](http://www.intel.com/design/pca/applicationsprocessors/swsup/index.htm).
230:
231: Support for the **DBPXA250** was written by Hiroyuki Bessho, and contributed
232: by Genetec Corp.
233:
234: * On-chip timers (_saost_ used as system clock)
235: * On-chip 2 serial port (_com_)
236: * On-board SMC91C96 ethernet (_sm_)
237: * On-board SA-1111 StrongArm companion chip (_sacc_)
238: * PS/2 keyboard (_pckbd_)
239: * 640x480 LCD (_lcd_)
240: * PCMCIA and CF card slots
241:
242: ### Intel **IQ31244**
243:
244: The IQ31244 is a development platform for the Intel **IOP321** I/O Processor
245: chipset and the Intel **i31244** SATA controller.
246:
247: Initial support for the IQ31244 was written by Jason Thorpe, and contributed
248: by Wasabi Systems, Inc.
249:
250: * Quad on-board Intel i31244 SATA controllers on the PCI-X bus (_artsata_)
251: * On-board Intel i82546EB Gigabit Ethernet on the PCI-X bus (_wm_)
252: * On-board NS16550-compatible serial port (_com_)
253: * On-chip timers (TMR0 used as system clock)
254: * On-chip Application Accelerator Unit (_iopaau_)
255: * On-chip watchdog timer (_iopwdog_)
256: * On-board compact flash reader (_wdc_)
257: * Other devices inserted into the PCI-X expansion slot
258:
259: ### Intel **IQ80310**
260:
261: The IQ80310 is the reference platform for the Intel **IOP310** I/O Processor
262: chipset, which is comprised of the i80200 XScale processor and the i80312 I/O
263: Companion chip.
264:
265: Support for the IQ80310 was written by Jason Thorpe and Allen Briggs, and
266: contributed by Wasabi Systems, Inc.
267:
268: * On-board Intel i82559 Ethernet on the PCI bus (_fxp_)
269: * On-board timer in the CPLD (used as system clock)
270: * On-board NS16550-compatible serial ports (_com_)
271: * Other devices inserted into the PCI expansion slots
272:
273: ### Intel **IQ80321**
274:
275: The IQ80321 is the reference platform for the Intel **IOP321** I/O Processor
276: (i80321 XScale processor).
277:
278: Support for the IQ80321 was written by Jason Thorpe, and contributed by Wasabi
279: Systems, Inc.
280:
281: * On-board Intel i82544EI Gigabit Ethernet on the PCI-X bus (_wm_)
282: * On-board NS16550-compatible serial port (_com_)
283: * On-chip timers (TMR0 used as system clock)
284: * On-chip Application Accelerator Unit (_iopaau_)
285: * On-chip watchdog timer (_iopwdog_)
286: * Other devices inserted into the PCI-X expansion slots
287:
288: ### Intel **IXM1200**
289:
290: The IXM1200 is the reference platform for the Intel **IXP1200** Network
291: Processor.
292:
293: Support for the IXM1200 was written by Ichiro FUKUHARA and Naoto Shimazaki.
294:
295: * On-board Intel i82559 Ethernet on the PCI bus (_fxp_)
296: * On-board Intel i21555 Non-Transparent PCI-PCI Bridge (_nppb_)
297: * On-chip timers (ixpclk0 used as system clock)
298: * On-chip serial port (_ixpcom_)
299:
300: ### NOVATEC **NTNP425B** ("ZAO425")
301:
302: NTNP425B is an evaluation and development platform for the Intel **IXP425**
303: XScale Core NetworkProcessor. NTNP425B is based on the reference board of
304: Intel **IXDP425**. The **NTNP425B** is capable of only big-endian operation.
305: Since the library for micro-engine(NPE) offered from Intel Corp. is big-
306: endian. More information about the **NTNP425B** can be found on [product
307: catalogue of **NTNP425B**(2.5MB,PDF
308: file)](http://www.novatec.co.jp/NTNP425BBrochureE.pdf).
309:
310: Support for the NTNP425B was written by Ichiro FUKUHARA.
311:
312: * On-chip timers (_ixpclk0_ used as system clock)
313: * On-chip 2 serial port (_ixpcom0_ and _ixpcom1_)
314: * Other devices inserted into the PCI/mPCI slot
315: * On-chip watchdog timer (_ixpwdog_)
316:
317: ### NVIDIA Tegra K1
318: Support for NVIDIA [[Tegra]] K1 SoCs is present in NetBSD-current and
319: 8.0_BETA. The Jetson TK1 board is currently supported.
320:
321: ### Raspberry Pi Foundation **Raspberry Pi**/**Raspberry Pi 2**/**Raspberry Pi 3**
322: The [[Raspberry Pi]] is a low-cost credit-card-sized computer from the Raspberry Pi Foundation. The Raspberry Pi, Pi 2, and Pi 3 are supported.
323:
324: ### Samsung **SMDK2410**
325:
326: The SMDK2410 is the reference platform for the Samsung **S3C2410** processor,
327: which has an ARM920T core.
328:
329: More information on the S3C2410 can be found at [Samsung Electronics web page]
330: (http://www.samsung.com/Products/Semiconductor/MobileSoC/ApplicationProcessor/
331: ARM9Series/S3C2410/S3C2410.htm).
332:
333: Support for the SMDK2410 was written by Hiroyuki Bessho, and contributed by
334: Genetec Corp.
335:
336: * On-chip serial ports (_sscom_)
337: * On-chip USB host controller (_ohc_)
338: * On-chip timers (used as system clock)
339: * On-chip SPI (_ssspi_, used for other on-board devices)
340: * 240x320 TFT LCD (_lcd_)
341: * keyboard. (_sskbd_)
342:
343: ### Samsung **SMDK2800**
344:
345: The SMDK2800 is the reference platform for the **Samsung S3C2800** processor,
346: which has an ARM920T core.
347:
348: S3C2800 has built-in PCI controller, and SMDK2800 has three PCI slots.
349:
350: Support for the SMDK2800 was written by Hiroyuki Bessho, and contributed by
351: Fujitsu Component Ltd., and Genetec Corp.
352:
353: * On-chip serial ports (_sscom_)
354: * On-chip Host-PCI bridge (_sspci_)
355: * On-chip timers (used as system clock)
356: * Other devices inserted into the PCI slots
357:
358: ### Team ASA, Inc. **Npwr**
359:
360: The Npwr is an IOP310-based design targeted at the network-attached storage
361: space. The Npwr comes in several configurations (single or dual Gigabit
362: Ethernet, single or dual Ultra160 SCSI), and can be purchased as a bare board
363: or as a small server appliance. More information on the Npwr can be found at
364: the [Team ASA web page](http://www.teamasa.com/).
365:
366: Support for the Npwr was written by Jason Thorpe and Allen Briggs, and
367: contributed by Wasabi Systems, Inc.
368:
369: * On-board Intel i82544 Gigabit Ethernet on the PCI bus (_wm_)
370: * On-board LSI Logic 53c1010 Ultra160 SCSI on the PCI bus (_siop_)
371: * On-board timer in the CPLD (used as system clock)
372: * On-board NS16550-compatible serial port (_com_)
373:
374: ### Technologic Systems **TS-7200**
375:
376: The TS-7200 is a low-cost mass-produced PC/104 embedded single board computer
377: intended as a general purpose core for real embedded applications. The TS-7200
378: uses the Cirrus Logic EP9302 ARM9 system-on-chip and comes with a PC/104 (isa)
379: bus and can either boot to CompactFlash or onboard flash. The board also has
380: general purpose digital IO and optional multichannel analog-to-digital
381: converters. More information on the TS-7200 can be found at [Technologic
382: Systems](http://www.embeddedarm.com/epc/ts7200-spec-h.html).
383:
384: Support for the TS-7200 was written by Jesse Off
385:
386: * On-CPU RS232 UARTs (2) (_epcom_)
387: * On-CPU 10/100 Ethernet MAC (_epe_)
388: * CompactFlash socket (_wdc_)
389: * USB 1.1 ports (2) (_ohci_)
390: * Watchdog timer on CPLD (_tspld_)
391: * TMP124 high precision temperature sensor via sysctl
392: * 64Hz system clock from on-CPU timers (_epclk_)
393: * HD44780 2x24 text mode LCD (_tslcd_)
394: * 4x4 16 button matrix keypad (_wskbd_)
395: * TS-5620 battery backed RTC daughter-card (_tsrtc_)
396: * 1,2,4 port serial TS-SER daughter cards (_com_)
397: * Up to 4 10Mb TS-ETH10 daughter cards (_tscs_)
398: * Other devices inserted into the PC/104 (_isa_) expansion slot
399:
400: """
401: additional="""
402: * The [NetBSD Diskless HOWTO](http://www.netbsd.org/docs/network/netboot/)
403: * [ Porting NetBSD/evbarm to the Arcom Viper](http://www.cs.hut.fi/~pooka/pubs/EuroBSDCon2005/viper.pdf), presented at EuroBSDCon 2005.
404: """
405: ]]
406: [[!tag tier1port]]
CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb