Diff for /wikisrc/kernel_debugging_with_qemu.mdwn between versions 1.3 and 1.12

version 1.3, 2010/07/14 23:44:13 version 1.12, 2015/08/05 12:58:13
Line 1 Line 1
 # Introduction  # Introduction
 Virtual machines are a convenient way to test, debug or even audit different systems on one single host. This is particularly helpful when you need to set up a machine for which you do not necessarily have the hardware, or the access, in a very cheap way, without risking breaking your day-to-day system.  This HOWTO explains how to set up a test environment for symbolic
   debugging of the NetBSD kernel using a pair of QEMU virtual machines.
 This tutorial show the different steps required to set up a raw disk image like the one used by QEMU. It deals with two different point of views:  ## Prerequisites
 * the host, which is the machine and OS hosting the different VMs.  You need a computer running an OS capable of cross-building NetBSD
 * the guest(s), representing the different systems emulated/hosted on the host, through QEMU.  (the "host system").
   This can be NetBSD itself, Linux, or some other Unix-like OS.
   These instructions have been tested with NetBSD/amd64 6.1.4 and
   Debian 7 hosts.   There should be at least 20 gigabytes of available
   disk space.
 # Setting up the environment  If your host system is running NetBSD, install the following packages
   from pkgsrc:
 ## Creating the raw disk image  * emulators/qemu >= 2.0.0nb4
   * misc/py-anita
 To start our VM, we need some disk space to provide an emulated hard drive. For QEMU, by default, this is done through raw disk images. Therefore, the first step will be the creation of a disk image file. Here, we create a 2GB file, filled with zeros:  If your host system uses a package system other than pkgsrc,
   use that to install cvs, make, gcc, qemu, the Python pexpect
   library, and genisoimage or mkisofs.  Also download and 
   install the most recent anita package from
 [[!template  id=programlisting text="""  ## Building the target system
 $ dd if=/dev/null of=netbsd-guest.img bs=1m count=2000  
 /!\ if you want to mount the file image from within the host later through [[!template id=man name="vnconfig" section="8"]], it is recommended to use [[!template id=man name="dd" section="1"]] and not the *qemu-img* tool, as [[!template id=man name="vnd" section="4"]] does not support sparse disk image yet.  
 Now that the disk image file is ready, we will need to install our system inside.  Check out the NetBSD-current sources from CVS and build a full release
   of NetBSD-current/i386 with debug symbols using the build.sh script.
 ## Preparing the MBR, labels, and first stage boot loader  The i386 port is the preferred test platform because the two
   other ports supported by anita are affected by known bugs: amd64 by
 Mount the image file as a [[!template id=man name="vnd" section="4"]] device. This will allow manipulating the image file just like a regular hard disk drive:  [[PR 50128|http://gnats.NetBSD.org/50128]], and sparc by
   [[qemu bug 1399943|https://bugs.launchpad.net/qemu/+bug/1399943]].
   If you do the build in a directory other than /usr/src, 
   use the -fdebug-prefix-map option to ensure that the source file names embedded
   in the debug symbols point to /usr/src, which is where the sources will be
   installed on the target system.  For example:
 [[!template  id=programlisting text="""  [[!template  id=programlisting text="""
 # vnconfig -c vnd0 netbsd-guest.img   $ CVSROOT=anoncvs@anoncvs.NetBSD.org:/cvsroot cvs checkout -A -P src
    $ cd src
    $ ./build.sh -j 4 -V MKDEBUG=YES -V COPTS="-g -fdebug-prefix-map=$(pwd)=/usr/src" -O ../obj -m i386 -U release sourcesets
 """]]  """]]
 ### Creating MBR  For best performance, change the number after "-j" to the number of CPU cores
   you have, or slightly more.
 Setup the MBR; it musts contain the NetBSD partition. This will be done interactively via [[!template id=man name="fdisk" section="8"]]:  ## Installing the target system
 [[!template  id=programlisting text="""  Install the system in a virtual machine, including the debug symbols and source code:
 # fdisk -u -a -0 /dev/rvnd0  
 Disk: /dev/rvnd0d  
 Do you want to change our idea of what BIOS thinks? [n] *n*  
 Partition 0:  [[!template  id=programlisting text="""
 <UNUSED>   $ cd ..
 The data for partition 0 is:   $ anita --workdir work --disk-size 4G --memory-size 256M \
 <UNUSED>       --sets kern-GENERIC,modules,base,etc,comp,debug,games,man,misc,tests,text,syssrc,src,sharesrc,gnusrc \
 sysid: [0..255 default: 169] *press enter*       install $(pwd)/obj/releasedir/i386/
 start: [0..255dcyl default: 63, 0dcyl, 0MB] *press enter*  
 size: [0..255dcyl default: 4095937, 255dcyl, 2000MB] *press enter*  
 bootmenu: [] *press enter*  
 Do you want to change the active partition? [n] *y*  
 Choosing 4 will make no partition active.  
 active partition: [0..4 default: 0] *press enter*  
 Are you happy with this choice? [n] *y*  
 We haven't written the MBR back to disk yet.  This is your last chance.  
 Partition table:  
 0: NetBSD (sysid 169)  
     start 63, size 4095937 (2000 MB, Cyls 0-254/245/55), Active  
         PBR is not bootable: All bytes are identical (0x00)  
 1: <UNUSED>  
 2: <UNUSED>  
 3: <UNUSED>  
 Bootselector disabled.  
 First active partition: 0  
 Should we write new partition table? [n] *y*  
 """]]  """]]
 ### Editing labels  ## Booting the VMs
   Next, start two qemu virtual machines, one to run the kernel being
   debugged (the "target VM") and another to run gdb (the "gdb VM").
 Edit the labels, with [[!template id=man name="disklabel" section="8"]]. The example below will create:  The two VMs could be run on separate physical machines, but in this
   example, they are run on the same physical machine and share the same
   hard disk image.  This sharing is made possible by the "-snapshot"
   option to qemu, which ensures that the disk image is not written to by
   either VM.
 * label **a**, approximately 1.5GiB long -- will contain the future FFS / partition  First start the target VM, enabling qemu's built-in GDB target stub
 * label **b**, 512MiB swap.  on TCP port 1234:
 [[!template  id=programlisting text="""  [[!template  id=programlisting text="""
 # disklabel -e -I /dev/rvnd0   $ qemu-system-i386 -nographic -snapshot -hda work/wd0.img -gdb tcp::1234
 4 partitions:  
 #        size    offset     fstype [fsize bsize cpg/sgs]  
  a:   3047361        63     4.2BSD      0     0     0  # (Cyl.      0*-   1487)  
  b:   1048576   3047424       swap                     # (Cyl.   1488 -   1999)  
  d:   4096000         0     unused      0     0        # (Cyl.      0 -   1999)  
 """]]  """]]
 ### Copying first stage boot loader  If you don't want everyone on the Internet to be able to debug your
   target, make sure incoming connections on port 1234 are blocked in
   your firewall.
 Lastly, we have to install the first stage boot loader, the one that will be able to read the second stage boot loader, which will reside in partition **a**. Use [[!template id=man name="installboot" section="8"]]:  In a second terminal window, start the gdb VM:
 [[!template  id=programlisting text="""  [[!template  id=programlisting text="""
 # installboot /dev/rvnd0a /usr/mdec/bootxx_ffsv2   $ qemu-system-i386 -nographic -snapshot -hda work/wd0.img
 """]]  """]]
 ## Format and mount the filesystem  Log in to the gdb VM as root and set up the network:
 With [[!template id=man name="newfs" section="8"]], format label **a** in FFSv2:  
 [[!template  id=programlisting text="""  [[!template  id=programlisting text="""
 # newfs -O2 /dev/rvnd0a   login: root
 /dev/rvnd0a: 1488.0MB (3047360 sectors) block size 16384, fragment size 2048   # dhcpcd
         using 9 cylinder groups of 165.34MB, 10582 blks, 20544 inodes.  
 super-block backups (for fsck_ffs -b #) at:  
 160, 338784, 677408, 1016032, 1354656, 1693280, 2031904, 2370528, 2709152,  
 """]]  """]]
 then [[!template id=man name="mount" section="8"]] it:  Start gdb on the gdb VM and connect to the target:
 [[!template  id=programlisting text="""  [[!template  id=programlisting text="""
 # mkdir /tmp/netbsd-guest   # gdb /netbsd
 # mount /dev/vnd0a /tmp/netbsd-guest   (gdb) target remote my.host.name:1234
 """]]  """]]
 # Installing the system  where my.host.name is the domain name or IP address of the
   host system.
 ## Quick and easy way  Now you should be able to get a stack trace and start debugging
   with full debug symbols and access to the source code:
   [[!template  id=programlisting text="""
    (gdb) where
    (gdb) list
 ## Through build.sh  If the stack trace prints very slowly (like 30 seconds per stack
   frame), it's likely because you are using a version of qemu where
   the user-mode networking code fails to disable the Nagle algorithm.
   This is fixed in the qemu in pkgsrc, but you may run into it if your
   qemu is not installed via pkgsrc.
 # Configuring the system  ## Qemu tips
 # Starting-up the VM  Here is a couple of useful qemu commands to know:
 # Debugging  * Ctrl-a b will send a break which will make the NetBSD VM enter the ddb kernel debugger.
 # Convenient scripts  * Ctrl-a c will switch to the qemu monitor where you can enter commands like "quit" to exit qemu,
   or do things like saving/restoring the VM to/from a file.

Removed from v.1.3  
changed lines
  Added in v.1.12

CVSweb for NetBSD wikisrc <wikimaster@NetBSD.org> software: FreeBSD-CVSweb